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1. Introduction

A matrix A with all elements greater than zero is referred to as a positive matrix and is denoted by
A > 0. Positive matrices possess several significant properties. Perron [1] first proposed that if A is
a positive matrix, then the spectral radius is an eigenvalue of A. This eigenvalue, denoted by ρ(A), is
called the maximal eigenvalue of A or the Perron root of A, and ρ(A) dominates all other eigenvalues
in modulus.

If A = (ai j), then A is called nonnegative if ai j ≥ 0 and is denoted by A ≥ 0. Nonnegative
matrices are frequently encountered in real-life applications. Frobenius [1] extended Perron’s theory
to nonnegative matrices and nonnegative irreducible matrices, leading to the rapid development of the
nonnegative matrix theory. The famous Perron-Frobenius theorem is widely used in both theory and
practice. Estimating the range of maximal eigenvalue of positive matrices is a popular topic in the
nonnegative matrix theory and has been extensively and thoroughly studied in [2–10].
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For any positive integer n, let 〈n〉= {1,2, · · · , n}. Given A = (ai j)n×n ≥ 0, we define

ri(A) =

n∑
k=1

aik, c j(A) =

n∑
k=1

ak j,min
i

ri(A) = r(A),max
i

ri(A) = R(A), i, j ∈ 〈n〉 .

Frobenius [1] obtained the following classical conclusion:

r(A) ≤ ρ(A) ≤ R(A). (1)

Additionally, equality in (1) is achieved when the sum of each row of the matrix A is equal. A similar
result holds for the column with the transpose matrix AT in place of A. The above inequality implies
that the maximal eigenvalue ρ(A) of a nonnegative square matrix A is between the smallest row sum
r(A) and the largest row sum R(A). This observation provides a convenient and efficient method for
estimating the maximal eigenvalue using the elements of A.

The class of positive matrices, which is the subclass of nonnegative matrices, shares similar
properties with nonnegative matrices. The generalization of the result in (1) was presented in [2–4]
to improve the bounds of the maximal eigenvalues of positive matrices.

Minc [5] made improvements to the bounds in (1) for nonnegative matrices with nonzero row sums,
resulting in the following:

min
i

 1
ri

n∑
t=1

aitrt

 ≤ ρ(A) ≤ max
i

 1
ri

n∑
t=1

aitrt

 .
Liu [6] generalized the above result further and obtained the following conclusion:

min
i

ri

(
Ak+m

)
ri

(
Ak)


1
m

≤ ρ (A) ≤ max
i

ri

(
Ak+m

)
ri

(
Ak)


1
m

, (2)

where k is any nonnegative integer and m is any positive integer. The same is true for column sums.
Based on Eq (2), Liu et al. [7] gave an innovative result as follows:

min
i

ri

(
AmBk

)
ri

(
Bk)


1
m

≤ ρ (A) ≤ max
i

ri

(
AmBk

)
ri

(
Bk)


1
m

, (3)

where B = (A + I)n−1 and I is the identity matrix of order n. The same is true for column sums.
If we set m=1 in (2), we will obtain

min
i

ri

(
Ak+1

)
ri

(
Ak) ≤ ρ (A) ≤ max

i

ri

(
Ak+1

)
ri

(
Ak) . (4)

The boundaries are further generalized in [8] as follows:

min
i

ri (AB)
ri (B)

≤ ρ (A) ≤ max
i

ri (AB)
ri (B)

, (5)

where B is an arbitrary matrix that has positive row sums.
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The following is the concept of a non-defective matrix. In linear algebra, a square matrix that lacks
a full basis of eigenvectors and cannot be diagonalized is referred to as a defective matrix. Specifically,
a matrix of order n is considered non-defective if it contains n linearly independent eigenvectors.

This paper is dedicated to the estimation and calculation of the maximal eigenvalue of a positive
matrix. Initially, we present monotonically increasing lower-bound estimations and monotonically
decreasing upper-bound estimations for the maximal eigenvalue of a positive matrix. Additionally,
we rigorously prove the monotonicity and convergence of these estimations. Notably, if the positive
matrix is non-defective, we provide a smoothing algorithm to calculate the maximal eigenvalue of such
a non-defective positive matrix.

2. Main results

To derive our conclusions, we will recall some essential lemmas as follows.

Lemma 1. [5] Let λ be an eigenvalue of the square matrix A of order n and let U = (u1, u2, · · · , un)T

and V = (v1, v2, · · · , vn)T be eigenvectors corresponding to λ of AT and A, respectively, then

λ

n∑
i=1

ui =

n∑
i=1

uiri(A),

λ

n∑
j=1

v j =

n∑
j=1

v jc j(A).

Lemma 2. [5] If qt > 0, t ∈ 〈n〉, then for any real numbers pt, t ∈ 〈n〉, the following inequality holds:

min
t

pt

qt
≤

n∑
t=1

pt

n∑
t=1

qt

≤ max
t

pt

qt
.

Now, we present the upper and lower bounds on the maximal eigenvalue of a positive matrix.
Theorem 1. Given a positive matrix A =

(
ai j

)
n×n

, let B1 = (A + αI)n−1, B2 = (A − βI)n−1, where
α = max

i
{aii} , β = min

i
{aii}. If ri (AB1B2) , 0, ci (AB1B2) , 0, i ∈ 〈n〉, then for any positive integer k,

we have

min
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) ≤ ρ (A) ≤ max
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) , (6)

min
i

√
ci

(
Ak+2B1B2

)
ci

(
AkB1B2

) ≤ ρ (A) ≤ max
i

√
ci

(
Ak+2B1B2

)
ci

(
AkB1B2

) . (7)

Proof. First, we prove ri

(
AkB1B2

)
> 0 with the condition ri (AB1B2) , 0. For any positive integer

k ≥ 2, the element of the matrix Ak−1B1B2 located in the t-th row and the j-th column is denoted by(
Ak−1B1B2

)
t j

. Note that AkB1B2 = AAk−1B1B2. We have

ri

(
AkB1B2

)
= ri

(
AAk−1B1B2

)
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=

n∑
j=1

n∑
t=1

ait

(
Ak−1B1B2

)
t j

=

n∑
t=1

n∑
j=1

ait

(
Ak−1B1B2

)
t j

=

n∑
t=1

ait

n∑
j=1

(
Ak−1B1B2

)
t j

=

n∑
t=1

aitrt(Ak−1B1B2). (8)

It is evident that B1 = (A + αI)n−1 and B2 = (A − βI)n−1 are nonnegative. Therefore, AB1B2 is
nonnegative and ri (AB1B2) > 0 holds under the restriction that ri (AB1B2) , 0. As A is a positive
matrix, that is, ai j > 0, i, j ∈ 〈n〉, we immediately obtain ri

(
AkB1B2

)
> 0 from Eq (8). By employing

the same approach, we also obtain ci

(
AkB1B2

)
> 0 if ci (AB1B2) , 0, i ∈ 〈n〉. These assertions ensure

that the expressions in Eqs (6) and (7) are valid.
Now, we assume X = (x1, x2, · · · , xn)T > 0 is the eigenvector of the matrix AT corresponding to

ρ(A), that is, ATX = ρ(A)X. Clearly, the maximal eigenvalues of the matrix polynomials

Ak+2B1B2 = Ak+2(A + αI)n−1(A − βI)n−1

and
AkB1B2 = Ak(A + αI)n−1(A − βI)n−1

are ρk+2 (A)
[
ρ (A) + α

]n−1[ρ (A) − β
]n−1 and ρk (A)

[
ρ (A) + α

]n−1[ρ (A) − β
]n−1, respectively. Therefore,

we obtain (
Ak+2B1B2

)T
X = ρk+2 (A)

[
ρ (A) + α

]n−1[ρ (A) − β
]n−1X

and (
AkB1B2

)T
X = ρk (A)

[
ρ (A) + α

]n−1[ρ (A) − β
]n−1X.

Based on Lemma 1, we have

ρk+2 (A)
[
ρ (A) + α

]n−1[ρ (A) − β
]n−1

n∑
i=1

xi =

n∑
i=1

xiri

(
Ak+2B1B2

)
(9)

and

ρk (A)
[
ρ (A) + α

]n−1[ρ (A) − β
]n−1

n∑
i=1

xi =

n∑
i=1

xiri

(
AkB1B2

)
. (10)

Moreover, we must have
ρk (A)

[
ρ (A) + α

]n−1[ρ (A) − β
]n−1 > 0.

This is guaranteed by the previous proof ri

(
AkB1B2

)
> 0 and

ρk (A)
[
ρ (A) + α

]n−1[ρ (A) − β
]n−1
≥ min

i
ri

(
AkB1B2

)
> 0, i ∈ 〈n〉 .
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Therefore, according to Eqs (9) and (10), we can get

ρ2(A) =

ρk+2 (A)
[
ρ (A) + α

]n−1[ρ (A) − β
]n−1

n∑
i=1

xi

ρk (A)
[
ρ (A) + α

]n−1[ρ (A) − β
]n−1

n∑
i=1

xi

=

n∑
i=1

xiri

(
Ak+2B1B2

)
n∑

i=1
xiri

(
AkB1B2

) .
It follows from Lemma 2 that

min
i

xiri

(
Ak+2B1B2

)
xiri

(
AkB1B2

) ≤ ρ2(A) ≤ max
i

xiri

(
Ak+2B1B2

)
xiri

(
AkB1B2

) ,
that is,

min
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) ≤ ρ (A) ≤ max
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) .
Therefore, inequality (6) is proved. Similarly, inequality (7) holds.
Remark 1. From the formula

ri

(
AkB1B2

)
=

n∑
t=1

aitrt(Ak−1B1B2),

in (8), we can observe that ri

(
Ak+2B1B2

)
, ri

(
AkB1B2

)
can be calculated by induction. In addition,

a new matrix multiplication technique known as the semitensor product of matrices (STP) has been
developed in recent years, which offers more powerful functionality compared to traditional matrix
multiplication [11–13]. This implies that it is not difficult to compute the upper and lower bounds
of ρ(A).

In the following, we prove the convergence of the upper and lower bound expressions in Theorem 1
when the positive integer k → ∞.
Theorem 2. Under the assumptions of Theorem 1, the following limits

lim
k→∞

min
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) , lim
k→∞

max
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) ,
lim
k→∞

min
i

√
ci

(
Ak+2B1B2

)
ci

(
AkB1B2

) , lim
k→∞

max
i

√
ci

(
Ak+2B1B2

)
ci

(
AkB1B2

) ,
exist, and ρ(A) satisfies the following inequalities:

lim
k→∞

min
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) ≤ ρ(A) ≤ lim
k→∞

max
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) ,
lim
k→∞

min
i

√
ci

(
Ak+2B1B2

)
ci

(
AkB1B2

) ≤ ρ(A) ≤ lim
k→∞

max
i

√
ci

(
Ak+2B1B2

)
ci

(
AkB1B2

) .
AIMS Mathematics Volume 9, Issue 3, 5925–5936.
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Proof. For any positive integer k ≥ 2, according to (8) and Lemma 2, we have

ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) =

n∑
t=1

aitrt

(
Ak+1B1B2

)
n∑

t=1
aitrt

(
Ak−1B1B2

) ≤ max
i

ri

(
Ak+1B1B2

)
ri

(
Ak−1B1B2

) = max
i

ri

(
A(k−1)+2B1B2

)
ri

(
Ak−1B1B2

) .

The above inequality shows that

max
i

ri

(
A(k−1)+2B1B2

)
ri

(
Ak−1B1B2

) ≥ max
i

ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) .
Therefore, we acquire

max
i

√
ri

(
A(k−1)+2B1B2

)
ri

(
Ak−1B1B2

) ≥ max
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) .
That is to say, the following sequence max

i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

)
 ,

is monotonically decreasing with respect to k. On the other hand, by Theorem 1 we know that the
sequence has a lower bound ρ (A). Based on the monotonicity bounded criterion, we conclude that

lim
k→∞

max
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) ,
exists and is not less than ρ (A). Similarly, the sequencemin

i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

)
 ,

increases monotonically with respect to k and has an upper bound ρ (A) according to (6) in Theorem 1.
Therefore, we derive that

lim
k→∞

min
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) ,
exists and is not more than ρ (A). Using the same approach, we can establish analogous results for
column rows when ci (AB1B2) , 0, i ∈ 〈n〉.

Theorem 2 discusses the upper and lower bounds on the maximum eigenvalue of a positive matrix

and proves that the sequence

max
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

)
 decreases monotonically and has a lower bound

ρ (A), while the sequence

min
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

)
 increases monotonically and has an upper bound
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ρ (A). It is natural to wonder whether lim
k→∞

max
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) or lim
k→∞

min
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) is then

equal to ρ (A)? In general, it is difficult to prove

lim
k→∞

min
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) = ρ(A) = lim
k→∞

max
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) .
Indeed, in special cases we have some elegant conclusions. The following are the results for a non-
defective positive matrix.
Theorem 3. Under the assumptions of Theorem 1, if the positive matrix A =

(
ai j

)
n×n

is non-defective,
then we have

lim
k→∞

min
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) = ρ(A) = lim
k→∞

max
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) , (11)

lim
k→∞

min
i

√
ci

(
Ak+2B1B2

)
ci

(
AkB1B2

) = ρ(A) = lim
k→∞

max
i

√
ci

(
Ak+2B1B2

)
ci

(
AkB1B2

) . (12)

Proof. Without loss of generality, it may be assumed that λ1, λ2, · · · , λn−1, ρ (A) are the eigenvalues of
the matrix A such that

|λ1| ≤ |λ2| ≤ · · · ≤ |λn−1| ≤ ρ (A) .

The corresponding eigenvector family is X1, X2, · · · , Xn-1, Xn, in which

X j =
(
x1 j, x2 j, · · · , xn j

)T
, j = 1, 2, · · · , n.

Since A is non-defective, the eigenvector family X1, X2, · · · , Xn-1, Xn forms a basis of the n-dimensional
vector space. Moreover, we have

ri

(
Ak+2B1B2

)
= ri

(
Ak+1AB1B2

)
=

n∑
j=1

n∑
t=1

(
Ak+1

)
it
(AB1B2)t j

=

n∑
t=1

n∑
j=1

(
Ak+1

)
it
(AB1B2)t j

=

n∑
t=1

(
Ak+1

)
it

n∑
j=1

(AB1B2)t j

=

n∑
t=1

(
Ak+1

)
it
rt(AB1B2), (13)

where
(
Ak+1

)
it

denotes the element of the matrix Ak+1 located in the i-th row and the t-th column
and (AB1B2)t j denotes the element of the matrix AB1B2 located in the t-th row and the j-th column,
respectively. Similarly, we have

ri

(
AkB1B2

)
=

n∑
t=1

(
Ak−1

)
it
rt (AB1B2) , k ≥ 2. (14)
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Now, we define a special vector as follows:

Y = (r1 (AB1B2) , r2 (AB1B2) , · · · , rn (AB1B2))T.

It is obvious that Y is a positive vector since ri (AB1B2) , 0 (more precisely, ri (AB1B2) > 0), i ∈ 〈n〉.
Thus, Y can be expressed as

Y = C1X1 + C2X2 + · · · + Cn−1Xn−1 + CnXn, (15)

where C1,C2, · · · ,Cn−1,Cn are not all zero. Together with Eqs (13) and (14), one can get

ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) =

n∑
t=1

(
Ak+1

)
it
rt (AB1B2)

n∑
t=1

(
Ak−1)

itrt (AB1B2)
, k ≥ 2.

On the other hand, we have
n∑

t=1

(
Ak+1

)
it
rt (AB1B2) =

[
Ak+1(r1 (AB1B2) , r2 (AB1B2) , · · · , rn (AB1B2))T

]
i
=

(
Ak+1Y

)
i

(16)

and
n∑

t=1

(
Ak−1

)
it
rt (AB1B2) =

[
Ak−1(r1 (AB1B2) , r2 (AB1B2) , · · · , rn (AB1B2))T

]
i
=

(
Ak−1Y

)
i
, (17)

in which
(
Ak+1Y

)
i
and

(
Ak−1Y

)
i
denote the i-th coordinates of the vectors Ak+1Y and Ak−1Y , respectively.

Combined with Eqs (15)–(17), we obtain

ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) =

(
Ak+1Y

)
i(

Ak−1Y
)

i

=

[
Ak+1 (C1X1 + C2X2 + · · · + Cn−1Xn−1 + CnXn)

]
i[

Ak−1 (C1X1 + C2X2 + · · · + Cn−1Xn−1 + CnXn)
]
i

=

(
C1Ak+1X1 + C2Ak+1X2 + · · · + Cn−1Ak+1Xn−1 + CnAk+1Xn

)
i(

C1Ak−1X1 + C2Ak−1X2 + · · · + Cn−1Ak−1Xn−1 + CnAk−1Xn
)

i

=
C1λ

k+1
1

xi1 + C2λ
k+1
2

xi2 + · · · + Cn−1λ
k+1
n−1

xi(n−1) + Cnρ
k+1 (A) xin

C1λk−1
1

xi1 + C2λk−1
2

xi2 + · · · + Cn−1λk−1
n−1

xi(n−1) + Cnρk−1 (A) xin
. (18)

Take the limit on both sides of Eq (18), and we acquire

lim
k→∞

ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) = lim
k→∞

C1λ
k+1
1

xi1 + C2λ
k+1
2

xi2 + · · · + Cn−1λ
k+1
n−1

xi(n−1) + Cnρ
k+1 (A) xin

C1λk−1
1

xi1 + C2λk−1
2

xi2 + · · · + Cn−1λk−1
n−1

xi(n−1) + Cnρk−1 (A) xin

= lim
k→∞

C1λ
k+1
1

xi1 + C2λ
k+1
2

xi2 + · · · + Cn−1λ
k+1
n−1

xi(n−1) + Cnρ
k+1 (A) xin

ρk+1 (A)
C1λ

k−1
1

xi1 + C2λ
k−1
2

xi2 + · · · + Cn−1λ
k−1
n−1

xi(n−1) + Cnρ
k−1 (A) xin

ρk−1 (A)
·

1
ρ2 (A)
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= ρ2 (A) .

Therefore, the equality in (11) holds. Similarly, we can prove that the corresponding result holds for
the column.
Remark 2. Equations (11) and (12) in Theorem 3 show that for a non-defective positive matrix A, the
limits of the maximum and minimum values of√√

ri

(
Ak+2B1B2

)
ri

(
AkB1B2

)

√√

ci

(
Ak+2B1B2

)
ci

(
AkB1B2

)
 ,

are equal to the maximum eigenvalue of A when k tends to infinity.

3. Algorithm

Based on Theorems 1–3, we can derive the algorithm for determining the maximum eigenvalue of
a non-defective positive matrix.
Step 0. Given a non-defective positive matrix A =

(
ai j

)
n×n

and a sufficiently small positive
number ε > 0;
Step 1. Let α = max

i
{aii} , β = min

i
{aii}. Compute B1 = (A + αI)n−1, B2 = (A − βI)n−1;

Step 2. Let k = 0;

Step 3. Compute T = max
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) , t = min
i

√
ri

(
Ak+2B1B2

)
ri

(
AkB1B2

) ;

Step 4. If T − t < ε, go to Step 5; otherwise, set k = k + 1 and go back to Step 3;

Step 5. Output k and ρ (A) =
T + t

2
, stop.

Remark 3. Replace the row sums in the algorithm with the corresponding column sums. The algorithm
is still valid.
Remark 4. In the above algorithm, the upper bound of ρ (A) is decreasing, while the lower bound
of ρ (A) is increasing. This behavior exhibits a smoothing tendency and, as a result, we refer to this
algorithm as a smoothing algorithm.

4. Numerical examples

In this section, we consider two examples to demonstrate our findings.
Example 1. Consider positive matrix:

A =


1 1 2
2 3 3
4 1 1

 .
The comparisons between the estimation results of [1–8] and Theorem 1 of this paper regarding the

maximal eigenvalue of matrix A are presented in Table 1.
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Table 1. Bounds for the maximal eigenvalue of A.

By row By column

(1) 4.0000 < ρ(A) < 8.0000 5.0000 < ρ(A) < 7.0000
Ledermann [2] 4.1547 < ρ(A) < 7.8661 5.0800 < ρ(A) < 6.9259
Ostrowski [3] 4.5275 < ρ(A) < 7.6547 5.2247 < ρ(A) < 6.8165

Brauer [4] 4.8284 < ρ(A) < 7.4642 5.3722 < ρ(A) < 6.7016
Minc [5] 5.0000 < ρ(A) < 6.2500 5.6000 < ρ(A) < 5.8572
(4)(k = 2) 5.5833 ≤ ρ(A) ≤ 5.8667 5.7143 ≤ ρ(A) ≤ 5.7805

(2)(m = k = 2) 5.6789 ≤ ρ(A) ≤ 5.7735 5.7259 ≤ ρ(A) ≤ 5.7615
(3)(m = k = 2) 5.6836 ≤ ρ(A) ≤ 5.8539 5.6975 ≤ ρ(A) ≤ 6.3087

(5)(B = (A + I)2) 5.1429 ≤ ρ(A) ≤ 6.4444 5.5000 ≤ ρ(A) ≤ 6.0000
Theorem 1(k = 1) 5.7292 ≤ ρ(A) ≤ 5.7581 5.7408 ≤ ρ(A) ≤ 5.7428
Theorem 1(k = 2) 5.7367 ≤ ρ(A) ≤ 5.7455 5.7413 ≤ ρ(A) ≤ 5.7419
Theorem 1(k = 3) 5.7405 ≤ ρ(A) ≤ 5.7432 5.7416 ≤ ρ(A) ≤ 5.7418

Indeed, ρ(A) = 5.74165738 · · · . The computational results in Table 1 demonstrate that the
conclusions obtained from Theorem 1 in this paper improve upon the existing related results.
Example 2. Calculate the maximal eigenvalue of the non-defective positive matrix B using the
algorithm in Section 3. The results are presented in Table 2.

B =



1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2
1 2 3 3 3 3 3 3
1 2 3 4 4 4 4 4
1 2 3 4 5 5 5 5
1 2 3 4 5 6 6 6
1 2 3 4 5 6 7 7
1 2 3 4 5 6 7 8


.

Table 2. Estimation for the maximal eigenvalue of B.

ε Iteration numbers ρ(B)

10−2 1 29.37
10−4 1 29.3653
10−6 1 29.36529789
10−8 1 29.36529789434
10−10 2 29.36529789436882

5. Conclusions

In this paper, we have introduced monotonically increasing lower-bound estimators and
monotonically decreasing upper-bound estimators for the maximal eigenvalue of a positive matrix.
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These estimators are constructed using two special matrices associated with the positive matrix. The
advantage of these estimators is that they are straightforward to compute, as they solely depend
on the elements of the positive matrix. Furthermore, we have rigorously proven the monotonicity
and convergence of both the upper and lower bound estimations for the maximal eigenvalue of
positive matrices.

Additionally, we have developed a smoothing algorithm specifically designed to calculate the
approximate value of the maximal eigenvalue for a non-defective positive matrix. This algorithm serves
as an effective tool to obtain a reasonably accurate estimate for the maximal eigenvalue in such cases.

Overall, our findings provide valuable insights and practical tools for estimating and computing
the maximal eigenvalue of positive matrices, with special attention given to non-defective
positive matrices.
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