In this paper, we constructed a novel Lie group by using oblate spheroidal coordinates. First, we took the metric tensor of oblate spheroidal coordinates, then found its Killing vectors by using the Killing equation. After solving a system of partial differential equations, we obtained the Killing vectors. With the help of these Killing vectors, we first constructed finite Lie algebra and then proved that Killing vectors form a Lie group. Also, we described the geometric properties in which this Lie group forms a regular surface, defined the differential map and differential of normal vector field, and found the gaussian and mean curvatures.
Citation: Muhammad Asad Iqbal, Abid Ali, Ibtesam Alshammari, Cenap Ozel. Construction of new Lie group and its geometric properties[J]. AIMS Mathematics, 2024, 9(3): 6088-6108. doi: 10.3934/math.2024298
In this paper, we constructed a novel Lie group by using oblate spheroidal coordinates. First, we took the metric tensor of oblate spheroidal coordinates, then found its Killing vectors by using the Killing equation. After solving a system of partial differential equations, we obtained the Killing vectors. With the help of these Killing vectors, we first constructed finite Lie algebra and then proved that Killing vectors form a Lie group. Also, we described the geometric properties in which this Lie group forms a regular surface, defined the differential map and differential of normal vector field, and found the gaussian and mean curvatures.
[1] | B. C. Hall, Lie groups, Lie algebras, and representations, Springer Science & Business Media, 2013. https://doi.org/10.1007/978-3-319-13467-3 |
[2] | V. Chiek, Geodesic on surfaces of constant Gaussian curvature, Theses Digitization Proj., 2006, 3045. |
[3] | H. Jafari, N. Kadkhoda, D. Baleanu, Lie group theory for nonlinear fractional $K(m, n)$ type equation with variable coefficients, Springer Science & Business Media, 2022,207–227. https://doi.org/10.1007/978-3-030-77169-0_8 |
[4] | S. Deshmukh, A. Ishan, S. B. Al-Shaikh, C. Özgür, A note on Killing calculus on Riemannian manifolds, Mathematics, 9 (2021), 307. https://doi.org/10.3390/math9040307 doi: 10.3390/math9040307 |
[5] | E. Celledoni, A. Iserles, Approximating the exponential from a Lie algebra to a Lie group, Math. Comput., 69 (2000), 1457–1480. https://doi.org/10.1090/S0025-5718-00-01223-0 doi: 10.1090/S0025-5718-00-01223-0 |
[6] | A. Hasic, Representations of Lie groups, Adv. Linear Algebra Matrix Theory, 11 (2021), 117–134. |
[7] | A. Hasic, Introduction to Lie algebras and their representations, Adv. Linear Algebra Matrix Theory, 11 (2021), 67–91. https://doi.org/10.4236/alamt.2021.113006 doi: 10.4236/alamt.2021.113006 |
[8] | J. Yang, J. Meng, X. Xin, Lie symmetry analysis, optimal system and exact solutions for variable-coefficients Boiti-Leon-Manna-Pempinelli equation, Phys. Scr., 99 (2024), 025233. https://doi.org/10.1088/1402-4896/ad1a32 doi: 10.1088/1402-4896/ad1a32 |
[9] | A. Liaqat, I. Hussain, Gravitational mass and approximate Lie symmetries for the charged Hayward black hole, New Astron., 107 (2024), 102152. https://doi.org/10.1016/j.newast.2023.102152 doi: 10.1016/j.newast.2023.102152 |
[10] | C. Chevalley, Theory of Lie groups, Courier Dover Publications, 2018. https://doi.org/10.2307/3610752 |
[11] | J. F. Adams, Lectures on Lie groups, University of Chicago Press, 1982. |
[12] | M. Rahioui, E. H. E. Kinani, A. Ouhadan, Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer-Kaup system, Comput. Appl. Math., 43 (2024), 36. https://doi.org/10.1007/s40314-023-02556-8 doi: 10.1007/s40314-023-02556-8 |
[13] | M. A. Naimark, Linear representations of the Lorentz group, Elsevier, 2014. |
[14] | R. W. Carter, Simple groups of Lie type, John Wiley & Sons, Inc., 1989. |
[15] | A. W. Knapp, Lie groups beyond an introduction, Birkhäuser, 1996. https://doi.org/10.1007/978-1-4757-2453-0 |
[16] | D. Prinz, A. Schmeding, Lie theory for asymptotic symmetries in general relativity: the BMS group, Class. Quantum Grav., 39 (2022), 065004. https://doi.org/10.1088/1361-6382/ac4ae2 doi: 10.1088/1361-6382/ac4ae2 |
[17] | F. Schwarz, Algorithmic Lie theory for solving ordinary differential equations, CRC Press, 2007. https://doi.org/10.1201/9781584888901 |
[18] | S. Silvestrov, E. Paal, V. Abramov, A. Stolin, Generalized Lie theory in mathematics, physics and beyond, Springer Science & Business Media, 2009. https://doi.org/10.1007/978-3-540-85332-9 |
[19] | V. Dobrev, Lie theory and its applications in physics, Springer Science & Business Media, 2013. https://doi.org/10.1007/978-4-431-54270-4 |
[20] | A. L. Onishchik, V. Gorbatsevich, E. Vinberg, Foundations of Lie theory, Lie transformation groups, Springer-Verlag, 1993. |
[21] | S. Kumar, D. Kumar, H. Kharbanda, Lie symmetry analysis, abundant exact solutions and dynamics of multisolitons to the (2+1)-dimensional KP-BBM equation, Pramana, 95 (2021), 33. https://doi.org/10.1007/s12043-020-02057-x doi: 10.1007/s12043-020-02057-x |
[22] | S. Kumar, D. Kumar, Lie symmetry analysis and dynamical structures of soliton solutions for the (2+1)-dimensional modified CBS equation, Int. J. Mod. Phys. B, 34 (2020), 2050221. https://doi.org/10.1142/S0217979220502215 doi: 10.1142/S0217979220502215 |
[23] | S. Kumar, S. Rani, Lie symmetry reductions and dynamics of soliton solutions of (2+1)-dimensional Pavlov equation, Pramana, 94 (2020), 116. https://doi.org/10.1007/s12043-020-01987-w doi: 10.1007/s12043-020-01987-w |
[24] | S. Kumar, H. Almusawa, A. Kumar, Some more closed-form invariant solutions and dynamical behavior of multiple solitons for the (2+1)-dimensional rdDym equation using the Lie symmetry approach, Results Phys., 24 (2021), 104201. https://doi.org/10.1016/j.rinp.2021.104201 doi: 10.1016/j.rinp.2021.104201 |
[25] | S. Kumar, D. Kumar, A. M. Wazwaz, Lie symmetries, optimal system, group-invariant solutions and dynamical behaviors of solitary wave solutions for a (3+1)-dimensional KdV-type equation, Eur. Phys. J. Plus, 136 (2021), 531. https://doi.org/10.1140/epjp/s13360-021-01528-3 doi: 10.1140/epjp/s13360-021-01528-3 |
[26] | D. Kumar, S. Kumar, Some new periodic solitary wave solutions of (3+1)-dimensional generalized shallow water wave equation by Lie symmetry approach, Comput. Math. Appl., 78 (2019), 857–877. https://doi.org/10.1016/j.camwa.2019.03.007 doi: 10.1016/j.camwa.2019.03.007 |
[27] | S. L. Shen, C. J. Song, Disturbation to Lie symmetry for constrained Hamiltonian system within Agrawal's operators, AIP Adv., 14 (2024), 0187329. https://doi.org/10.1063/5.0187329 doi: 10.1063/5.0187329 |
[28] | E. Feleqi, F. Rampazzo, Iterated Lie brackets for nonsmooth vector fields, Nonlinear Differ. Equations Appl. NoDEA, 24 (2017), 61. https://doi.org/10.1007/s00030-017-0484-4 doi: 10.1007/s00030-017-0484-4 |
[29] | D. J. Cirilo-Lombardo, N. G. Sanchez, Quantum-spacetime symmetries: a principle of minimum group representation, Universe, 10 (2024), 22. https://doi.org/10.3390/universe10010022 doi: 10.3390/universe10010022 |
[30] | L. Ju, Y. Zhang, F. Afzal, B. Feng, Conservation law and Lie symmetry analysis of the Zakharov-Kuznetsov equation, Mod. Phys. Lett., 38 (2024), 2350254. https://doi.org/10.1142/S0217984923502548 doi: 10.1142/S0217984923502548 |
[31] | S. Lipschutz, D. Spellman, M. R. Spiegel, Vector analysis and an introduction to tensor analysis, 2 Eds., McGraw-Hill, 2009. |
[32] | U. Camci, K. Saifullah, Conformal symmetries of the energy-momentum tensor of spherically symmetric static spacetimes, Symmetry, 14 (2022), 647. https://doi.org/10.3390/sym14040647 doi: 10.3390/sym14040647 |
[33] | A. N. Pressley, Elementary differential geometry, Springer Science & Business Media, 2011. https://doi.org/10.1007/978-1-84882-891-9 |