In this paper, we introduced double cyclic codes over $ R^r\times R^s $, where $ R = \mathbb{Z}_{2}+u\mathbb{Z}_{2} = \{0, 1, u, 1+u\} $ is the ring with four elements and $ u^2 = 0 $. We first determined the generator polynomials of $ R $-double cyclic codes for odd integers $ r $ and $ s $, then gave the generators of duals of free double cyclic codes over $ R^r\times R^s $. By defining a linear Gray map, we looked at the binary images of $ R $-double cyclic codes and gave several examples of optimal parameter binary linear codes obtained from $ R $-double cyclic codes. Moreover, we studied self-dual $ R $-double cyclic codes and presented an example of a self-dual $ R $-double cyclic code.
Citation: Ismail Aydogdu. On double cyclic codes over $ \mathbb{Z}_2+u\mathbb{Z}_2 $[J]. AIMS Mathematics, 2024, 9(5): 11076-11091. doi: 10.3934/math.2024543
In this paper, we introduced double cyclic codes over $ R^r\times R^s $, where $ R = \mathbb{Z}_{2}+u\mathbb{Z}_{2} = \{0, 1, u, 1+u\} $ is the ring with four elements and $ u^2 = 0 $. We first determined the generator polynomials of $ R $-double cyclic codes for odd integers $ r $ and $ s $, then gave the generators of duals of free double cyclic codes over $ R^r\times R^s $. By defining a linear Gray map, we looked at the binary images of $ R $-double cyclic codes and gave several examples of optimal parameter binary linear codes obtained from $ R $-double cyclic codes. Moreover, we studied self-dual $ R $-double cyclic codes and presented an example of a self-dual $ R $-double cyclic code.
[1] | T. Abualrub, I. Siap, N. Aydin, $\mathbb{Z}_2 \mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508–1514. http://dx.doi.org/10.1109/TIT.2014.2299791 doi: 10.1109/TIT.2014.2299791 |
[2] | T. Abualrub, I. Siap, Cyclic codes over the cings $\mathbb{Z}_{2}+u\mathbb{Z}_{2}$ and $\mathbb{Z}_{2}+u\mathbb{Z} _{2}+{u}^{2}\mathbb{Z}_{2}$, Des. Codes Cryptogr., 42 (2007), 273–287. http://dx.doi.org/10.1007/s10623-006-9034-5 doi: 10.1007/s10623-006-9034-5 |
[3] | M. Al-Ashker, M. Hamoudeh, Cyclic codes over $\mathbb{Z}_{2}+u\mathbb{Z}_{2}+{u}^{2}\mathbb{Z}_{2}+\cdots +{u}^{k-1} \mathbb{Z}_{2}$, Turk. J. Math., 35 (2011), 737–749. http://dx.doi.org/10.3906/mat-1001-71 doi: 10.3906/mat-1001-71 |
[4] | I. Aydogdu, Codes over $\mathbb{Z}_{p}[u]/{\langle u^r \rangle}\times\mathbb{Z}_{p}[u]/{\langle u^s \rangle}$, J. Algebra Comb. Discrete Appl., 6 (2019), 39–51. http://dx.doi.org/10.13069/jacodesmath.514339 doi: 10.13069/jacodesmath.514339 |
[5] | I. Aydogdu, T. Abualrub, I. Siap, $\mathbb{Z}_{2}\mathbb{Z}_{2}[u]$-cyclic and constacyclic codes, IEEE Trans. Inform. Theory, 63 (2017), 4883–4893. http://dx.doi.org/10.1109/TIT.2016.2632163 doi: 10.1109/TIT.2016.2632163 |
[6] | A. Bonnecaze, P. Udaya, Cyclic codes and self-dual codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}$, IEEE Trans. Inform. Theory, 45 (1999), 1250–1255. http://dx.doi.org/10.1109/18.761278 doi: 10.1109/18.761278 |
[7] | T. Bag, H. Islam, O. Prakash, A. K. Upadhyay, A note on constacyclic and skew constacyclic codes over the ring $\mathbb{Z}_p[u, v] /\langle u^2-u, v^2-v, u v-v u\rangle$, J. Algebra Comb. Discrete Appl., 6 (2019), 163–172. http://dx.doi.org/10.13069/jacodesmath.617244 doi: 10.13069/jacodesmath.617244 |
[8] | J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà, M. Villanueva, $\mathbb{Z}_{2}\mathbb{Z} _{4} $-linear codes: generator matrices and duality, Des. Codes Cryptogr., 54 (2010), 167–179. http://dx.doi.org/10.1007/s10623-009-9316-9 doi: 10.1007/s10623-009-9316-9 |
[9] | J. Borges, C. Fernández-Córdoba, R. Ten-Valls, $\mathbb{Z}_2$-double cyclic codes, Des. Codes Cryptogr., 86 (2018), 463–479. http://dx.doi.org/10.1007/s10623-017-0334-8 doi: 10.1007/s10623-017-0334-8 |
[10] | J. Gao, M. J. Shi, T. T. Wu, F. W. Fu, On double cyclic codes over ${ \mathbb{Z}}_4$, Finite Fields Appl., 39 (2016), 233–250. http://dx.doi.org/10.1016/j.ffa.2016.02.003 doi: 10.1016/j.ffa.2016.02.003 |
[11] | M. Grassl, Table of Bounds on Linear Codes, 2024. Available from: http://www.codetables.de/. |
[12] | O. Prakash, S. Patel, A note on two-dimensional cyclic and constacyclic codes, J. Algebra Comb. Discrete Appl., 9 (2022), 161–174. |
[13] | I. Siap, N. Kulhan, The structure of generalized quasi-cyclic codes, Appl. Math. E-Notes, 5 (2005), 24–30. |