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Abstract: In this paper, we introduced double cyclic codes over Rr × Rs, where R = Z2 + uZ2 =

{0, 1, u, 1+ u} is the ring with four elements and u2 = 0. We first determined the generator polynomials
of R-double cyclic codes for odd integers r and s, then gave the generators of duals of free double cyclic
codes over Rr × Rs. By defining a linear Gray map, we looked at the binary images of R-double cyclic
codes and gave several examples of optimal parameter binary linear codes obtained from R-double
cyclic codes. Moreover, we studied self-dual R-double cyclic codes and presented an example of a
self-dual R-double cyclic code.
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1. Introduction

Let S be a commutative ring. A linear code C of length n over S is a sub-module of S n. Any linear
code C over S , with the property that any right cyclic shift of the coordinates of a codeword is also a
codeword, is called a cyclic code. A subfamily of linear codes is known as double cyclic codes and
was introduced by Borges et al. in 2018 in [9]. A linear code is said to be a double cyclic code if its
coordinates can be partitioned into two subsets, the first r coordinates and the last s coordinates, such
that any simultaneous cyclic shift of the coordinates of the subsets leaves the code invariant. In [9],
Borges et al. conducted a study on the algebraic structure of Z2-double cyclic codes. The research
involved the determination of generator polynomials for both this family of codes and their duals.
Additionally, the paper established a connection between Z2-double cyclic codes and Z2Z4-additive
cyclic codes, as initially introduced in [8]. Actually, double cyclic codes are generalized quasi-cyclic
(GQC) codes with index 2, introduced in [13] by Siap and Kulhan. However, there is a difference
between the papers [13] and [9]. Siap and Kulhan studied the structure of GQC codes giving the
minimal spanning sets, weight enumerators, and minimum Hamming distance bounds of these codes.
In [9], the authors discussed the generators and gave the explicit generator polynomials of Z2-double
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cyclic codes. Moreover, in [10], Gao et al. introduced the structure of double cyclic codes over the
finite ring Z4.

Now, consider the ring R = Z2 + uZ2 = {0, 1, u, 1 + u} where u2 = 0. The ring R is an important
ring with four elements other than the well-known ring Z4. There are many studies about the cyclic
codes over R, such as [2–4, 6, 7, 12]. It has been shown that studying linear and cyclic codes over R
has advantages compared to the ring Z4. First of all, since the finite field F2 is a subring of the ring
R, the factorization of polynomials over F2 is still valid over R. Additionally, the binary images of
linear codes over R are always linear codes, which is not always the case for Z4. Moreover, decoding
algorithms of cyclic codes over R are easier than that over Z4.

In this paper, we are interested in studying double cyclic codes over Rr × Rs, where r and s are two
odd positive integers. We determine both the generators of R-double cyclic code C and its dual C⊥.
We show that C⊥ is also an R-double cyclic code. As an application of our study, we give examples
of binary linear codes with good parameters according to the database [11], which are binary images
of R-double cyclic codes. We also construct an example of a self-dual R-double cyclic code and,
furthermore, we show that the binary images of R-double cyclic codes are either binary QC (quasi-
cyclic) or GQC codes.

2. Preliminaries

Let R = Z2 + uZ2 = {0, 1, u, 1 + u}, with u2 = 0. A nonempty subset C of Rn is called a linear
code over R if C is an R-sub-module of Rn. It is well known that a linear code C over R is permutation
equivalent to a code with generator matrix

G =
[

Ik1 A B1 + uB2

0 uIk2 uD

]
,

where A, B1, B2, and D are matrices over Z2.
We can map linear codes over R to linear codes over Z2 by using the following Gray map.
Let a = (x0 + uy0, . . . , xn−1 + un−1yn−1) ∈ Rn. Define the Gray mapping

ϕ : Rn → Z2n
2 (2.1)

ϕ(a) = (y0, . . . yn−1, x0 ⊕ y0, . . . , xn−1 ⊕ yn−1)

where xi ⊕ yi = xi + yi mod 2, 0 ≤ i ≤ n − 1. The map ϕ is an isometry, which transforms the Lee
distance in Rn to the Hamming distance in Z2n

2 . The Hamming weight of any codeword is defined as
the number of its nonzero entries. The Hamming distance between two codewords is the Hamming
weight of their difference.

Furthermore, the Gray image ϕ (C) of C is a binary linear code as well. This property is not valid for
the codes over Z4 in general. We naturally define the Lee weight of a codeword v = (v0, . . . , vn−1) ∈ Rn

as

wt(v) =
n−1∑
i=0

wtL(vi)

where wtL(vi) is the Lee weight of the coordinate of vi ∈ R, and the Lee weight of a coordinate vi ∈ R is
defined by wtL(vi) = 2 if vi = u, wtL(vi) = 1 if vi ∈ {1, 1+u} and zero otherwise. We can also extend the
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above map to Rr × Rs for a = (x0 + uy0, . . . , xr−1 + uyr−1) ∈ Rr, b = (p0 + uq0, . . . , ps−1 + uqs−1) ∈ Rs

as follows:

Φ : Rr × Rs → Z2n
2

(a, b)→ (y0, . . . yr−1, x0 ⊕ y0, . . . , xr−1 ⊕ yr−1, q0, . . . , qs−1, p0 ⊕ q0, . . . , ps−1 ⊕ qs−1)

where xi ⊕ yi = xi + yi mod 2, 0 ≤ i ≤ r − 1, p j ⊕ q j = p j + q j mod 2, 0 ≤ j ≤ s − 1, and n = r + s.
Now, consider the polynomial ring R[x]/(xn − 1). A cyclic code of length n over R is an ideal in the

ring R[x]/(xn − 1). Next, we introduce the definition of double cyclic codes over R, which is a natural
extension of the classical definition of cyclic codes.

Definition 2.1. Let C be a linear code over R of length n = r+ s. The code C will be called an R-double
cyclic if

c = (u0, u1, . . . , ur−2, ur−1|v0, v1, . . . , vs−2, vs−1) ∈ C

implies
T (c) = (ur−1, u0, u1, . . . , ur−2|vs−1, v0, v1, . . . , vs−2) ∈ C.

For any codeword c = (u0, u1, . . . , ur−2, ur−1|v0, v1, . . . , vs−2, vs−1) ∈ Rn and any i ∈ Z, we define the
ith shift of the codeword c to be

T i(c) =
(
u(0−i)mod r, u(1−i)mod r, . . . , u(r−1−i)mod r|v(0−i)mod s, . . . , v(s−1−i)mod s

)
.

In this paper, we always take r and s as odd positive integers. Let us denote the set R[x]/(xr − 1) ×
R[x]/(xs − 1) by Rr,s. If C ⊆ Rr × Rs, then any element

c = (u0, u1, . . . , ur−1|v0, v1, . . . , vs−1) ∈ C

can be identified with an element of Rr,s as follows:

c(x) = (u0 + u1x + · · · + ur−1xr−1|v0 + v1x + · · · + vs−1xs−1) = (u(x), v(x)) .

This is a one-to-one correspondence between Rr × Rs and Rr,s. Moreover, for any h(x) ∈ R[x] and any
( f (x), g(x)) ∈ Rr,s, define the multiplication

h(x) ∗ ( f (x), g(x)) = (h(x) f (x), h(x)g(x)) .

This multiplication is well-defined and the ring Rr,s is an R[x]-module. Furthermore, any R-double
cyclic code C is an R[x]-sub-module of Rr,s.

The inner product between two elements

v = (a0, . . . , ar−1, b0, . . . , bs−1) ,w = (d0, . . . , dr−1, e0, . . . , es−1) ∈ Rr × Rs,

is defined by

⟨v,w⟩ =

 r−1∑
i=0

aidi +

s−1∑
j=0

b je j

 ∈ Z2 + uZ2.

By using this inner product, we can define the dual code of an R-double cyclic code C.

AIMS Mathematics Volume 9, Issue 5, 11076–11091.



11079

Definition 2.2. Let C be an R-double cyclic code. The dual of C is defined in the usual way as follows:

C⊥ = {w ∈ Rr × Rs| ⟨v,w⟩ = 0 ∀v ∈ C} .

Using this definition of the dual, we have the following Lemma 2.1. We skip the details for the
proof of Lemma 2.1 since we obtain these results with a similar approach to that in [5].

Lemma 2.1. If C is an R-double cyclic code, then C⊥ is also an R-double cyclic code.

In the sequel, we determine the generator polynomials of an R-double cyclic code C.

Theorem 2.1. Let C be an R-double cyclic of length n = r + s, then

C = ⟨(g1(x) + ua1(x), 0) , (ℓ(x), g2(x) + ua2(x))⟩ ,

where a1(x)|g1(x)| (xr − 1) , a2(x)|g2(x)| (xs − 1) over R and ℓ(x) is a polynomial over R.

Proof. Let C be an R-double cyclic code. Since both C and R[x]/(xs − 1) are R[x]-modules, we can
define the following map:

χ : C → R[x]/(xs − 1)
χ ( f1(x), f2(x)) = f2(x).

It is clear that χ is an R-module homomorphism whose image is an R[x]-sub-module (indeed an ideal)
of R[x]/(xs − 1) and ker(χ) is a sub-module of C. Furthermore, we can easily show that Image(χ) is
an ideal in R[x]/(xs − 1). The reader can find more detailed information about the structure of cyclic
codes over R[x]/(xs − 1) in [2]. Since s is an odd integer and Image(χ) is an ideal in R[x]/(xs − 1),
from [2] we have

χ(C) = ⟨g2(x) + ua2(x)⟩

where g2(x) and a2(x) are polynomials in R[x] satisfying a2(x)|g2(x)|xs − 1. We also note that

ker(χ) = {( f (x), 0) ∈ C | f (x) ∈ R[x]/(xr − 1)}.

Now, let us define the set

A = { f (x) ∈ R[x]/(xr − 1) | ( f (x), 0) ∈ ker(χ)}.

It is clear thatA is an ideal in R[x]/(xr − 1). So, we can writeA = ⟨g1(x) + ua1(x)⟩ with g1(x), a1(x) ∈
R[x]/(xr − 1) and a1(x)|g1(x)|xr − 1. It follows from here that for any element ( j(x), 0) ∈ ker(χ), we
have j(x) ∈ A, then j(x) = m1(x) (g1(x) + ua1(x)) for the polynomial m1(x) ∈ R[x]. Hence,

( f (x), 0) = m1(x) ∗ (g1(x) + ua1(x))

which implies that ker(χ) is a sub-module of C generated by the element of the form (g1(x) + ua1(x)).
By the first isomorphism theorem, we have

C/ ker(χ) � (g2(x) + ua2(x)) .
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Finally, we need to prove the uniqueness of the generators. Note that since (g1(x) + ua1(x)) and
(g2(x) + ua2(x)) are cyclic codes over R, this proves the uniqueness of the polynomials g1(x), a1(x),
and g2(x), a2(x). Now, suppose that

C = ⟨(g1(x) + ua1(x), 0) , (ℓ1(x), g2(x) + ua2(x))⟩
= ⟨(g1(x) + ua1(x), 0) , (ℓ2(x), g2(x) + ua2(x))⟩.

Therefore, (ℓ1(x) − ℓ2(x), 0) ∈ ker(χ) = ⟨g1(x) + ua1(x), 0⟩ . This implies that

ℓ1(x) − ℓ2(x) = (g1(x) + ua1(x))µ(x)

for some polynomial µ(x) ∈ R[x]. Since deg (ℓ1(x) − ℓ2(x)) ≤ deg ℓ1(x) < deg(g1(x) + ua1(x)), then
µ(x) = 0, and we have ℓ1(x) = ℓ2(x). This completes the proof. □

Lemma 2.2. If C = ⟨(g1(x) + ua1(x), 0) , (ℓ(x), g2(x) + ua2(x))⟩ is an R-double cyclic code, then we
may assume that deg ℓ(x) < deg (g1(x) + ua1(x)).

Proof. See Lemma 9 in [1]. □

Lemma 2.3. If C = ⟨(g1(x) + ua1(x), 0) , (ℓ(x), g2(x) + ua2(x))⟩ is an R-double cyclic code, then (g1(x)+

ua1(x))|
(

xs − 1
a2(x)

)
ℓ(x).

Proof. Consider

χ

(
xs − 1
a2(x)

∗ (ℓ(x), g2(x) + ua2(x))
)
= χ

(
xs − 1
a2(x)

ℓ(x), 0
)
= 0.

It means that
(

xs − 1
a2(x)

ℓ(x), 0
)
∈ ker(χ), and we have (g1(x) + ua1(x))|

(
xs − 1
a2(x)

)
ℓ(x). □

Remark 1. From the above discussion, if (ℓ(x), g2(x) + ua2(x)) ∈ C for any R-double cyclic code, then(
xs − 1
a2(x)

ℓ(x), 0
)
∈ C. This implies that if R-double cyclic code C is generated by (ℓ(x), g2(x) + ua2(x)),

then we must have (xr − 1)
∣∣∣ xs − 1

a2(x)
ℓ(x).

We summarize all the discussions about the generators of R-double cyclic codes with the following
theorem.

Theorem 2.2. Let C be a double cyclic code in Rr,s, then C can be identified as

(1) C = ⟨(g1(x) + ua1(x), 0)⟩, where a1(x)|g1(x)|(xr − 1), or

(2) C = ⟨(ℓ(x), g2(x) + ua2(x))⟩, where (xr − 1)
∣∣∣ xs − 1

a2(x)
ℓ(x) and a2(x)|g2(x)|(xs − 1), or

(3) C = ⟨(g1(x) + ua1(x), 0) , (ℓ(x), g2(x) + ua2(x))⟩, where a1(x)|g1(x)|(xr − 1), a2(x)|g2(x)|(xs − 1),

(g1(x) + ua1(x))|
(

xs − 1
a2(x)

)
ℓ(x), and deg ℓ(x) < deg (g1(x) + ua1(x)).

Definition 2.3. Let M be an R-module. A linearly independent subset N of M that spans M is called a
basis of M. If an R-module has a basis, then it is called a free R-module.

AIMS Mathematics Volume 9, Issue 5, 11076–11091.



11081

It is important to note that if C is a double cyclic code of the form
C = ⟨(g1(x) + ua1(x), 0) , (ℓ(x), g2(x) + ua2(x))⟩ with (g1(x) + ua1(x))|(xr − 1) and
(g2(x) + ua2(x))|(xs − 1), then C is a free R-module [2]. If C is not of this form, then it is not a free
R-module. Still, one can present a minimal spanning set for the code. In the following theorem, we
present a spanning minimal set for double cyclic codes viewed as R-sub-modules.

Theorem 2.3. Let C = ⟨(g1(x) + ua1(x), 0) , (ℓ(x), g2(x) + ua2(x))⟩ be an R-double cyclic code in Rr,s

with all generator polynomials g1(x), a1(x), g2(x), a2(x), and ℓ(x) as in Theorem 2.1 and g1(x)h1(x) =
xr − 1, g2(x)h2(x) = xs − 1. Furthermore, let deg(g1(x)) = t1, deg(a1(x)) = t2, deg(g2(x)) = k1, and
deg(a2(x)) = k2. Consider the following sets:

S 1 =

r−t1−1⋃
i=0

{
xi ∗ (g1(x) + ua1(x), 0)

}
S 2 =

t1−t2−1⋃
i=0

{
xi ∗ (uh1(x)a1(x), 0)

}
S 3 =

s−k1−1⋃
i=0

{
xi ∗ (ℓ(x), g2(x) + ua2(x))

}
S 4 =

k1−k2−1⋃
i=0

{
xi ∗ (h2(x)ℓ(x), uh2(x)a2(x))

}
,

then
S = S 1 ∪ S 2 ∪ S 3 ∪ S 4

forms a minimal spanning set for C as an R-module. Moreover, C has 4r+s−t1−k12t1+k1−t2−k2 codewords.

Proof. Let
c(x) = m(x) ∗ (g1(x) + ua1(x), 0) + n(x) ∗ (ℓ(x), g2(x) + ua2(x)) ∈ Rr,s

correspond to a codeword in C, where m(x) and n(x) are polynomials in R[x]. If deg(m(x)) ≤ r− t1 − 1,
then m(x)∗ (g1(x) + ua1(x), 0) ∈ Span(S 1). Otherwise, by using the division algorithm, we have m(x) =
h1(x)q1(x)+ r1(x), where q1(x), r1(x) ∈ R[x] and 0 ≤ deg((r1(x))) < r − t1 − 1. It follows from here that

m(x) ∗ (g1(x) + ua1(x), 0) = (h1(x)q1(x) + r1(x)) ∗ (g1(x) + ua1(x), 0)

= q1(x) ∗ (uh1(x)a1(x), 0) + r1(x) ∗ (g1(x) + ua1(x), 0) .

If deg(q1(x)) ≤ t1 − t2 − 1, then we get that q1(x) ∗ (uh1(x)a1(x), 0) ∈ Span(S 2). Otherwise, by using the
division algorithm again, we have

q1(x) =
xr − 1

h1(x)a1(x)
q2(x) + r2(x)

where q2(x) and r2(x) are polynomials in R[x] with 0 ≤ deg(r2(x)) ≤ t1 − t2 − 1. Therefore,

q1(x) ∗ (uh1(x)a1(x), 0) =
(

xr − 1
h1(x)a1(x)

q2(x) + r2(x)
)
∗ (uh1(x)a1(x), 0)
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= r2(x) ∗ (uh1(x)a1(x), 0) ∈ Span(S 2).

So, we have shown that m(x) ∗ (g1(x) + ua1(x), 0) ∈ Span(S 1 ∪ S 2).
Now, if deg(n(x)) ≤ s − k1 − 1, then n(x) ∗ (ℓ(x), g2(x) + ua2(x) ∈ Span(S 3). Otherwise, by the

division algorithm,

n(x) = q3(x)h2(x) + r3(x) with 0 ≤ deg(r3(x)) ≤ s − k1 − 1.

Hence,

n(x) ∗ (ℓ(x), g2(x) + ua2(x) = (q3(x)h2(x) + r3(x)) ∗ (ℓ(x), g2(x) + ua2(x))

=q3(x) ∗ (h2(x)ℓ(x), uh2(x)a2(x)) + r3(x) ∗ (ℓ(x), g2(x) + ua2(x)) .

Since 0 ≤ deg(r3(x)) ≤ s− k1−1, then r3(x)∗ (ℓ(x), g2(x) + ua2(x)) ∈ Span(S 3). So, the only remaining
part is to prove that

q3(x) ∗ (h2(x)ℓ(x), uh2(x)a2(x)) ∈ Span(S ).

We know that (g1(x) + ua1(x))|
(

xs − 1
a2(x)

)
ℓ(x). Therefore, we can find a polynomial λ(x) ∈ R[x] such

that
xs − 1
a2(x)

ℓ(x) = λ(x) (g1(x) + ua1(x)) . Again, if deg(q3(x)) ≤ k1 − k2 − 1, then

q3(x) ∗ (h2(x)ℓ(x), uh2(x)a2(x)) ∈ Span(S 4). Otherwise, we have

q3(x) =
xs − 1

h2(x)a2(x)
q4(x) + r4(x)

for the polynomials q4(x), r4(x) ∈ R[x] with 0 ≤ deg(r4(x)) ≤ k1 − k2 − 1. Therefore,

q3(x) ∗ (h2(x)ℓ(x), uh2(x)a2(x)) = q4(x) ∗
(

xs − 1
a2(x)

ℓ(x), 0
)
+ r4(x) ∗ (h2(x)ℓ(x), uh2(x)a2(x)) .

Since
xs − 1
a2(x)

ℓ(x) = λ(x) (g1(x) + ua1(x)), then q4(x) ∗
(

xs − 1
a2(x)

ℓ(x), 0
)
∈ Span(S 1 ∪ S 2). Also, it is clear

that r4(x) ∗ (h2(x)ℓ(x), uh2(x)a2(x)) ∈ Span(S 4). Therefore, S = S 1 ∪ S 2 ∪ S 3 ∪ S 4 is a spanning set for
C. Finally, it is clear that the set S is a minimal generating set in the sense that there is no element in
S linearly dependent with the other elements. So, C has 4r+s−t1−k12t1+k1−t2−k2 codewords. □

Example 2.1. Consider the double cyclic code C in R[x]/(x15 − 1) × R[x]/(x7 − 1) generated by
((g1(x) + ua1(x), 0), (ℓ(x), g2(x) + ua2(x))), where

g1(x) = a1(x) = (1 + x)(1 + x + x4)(1 + x3 + x4) = 1 + x2 + x3 + x6 + x7 + x9,

g2(x) = (1 + x)(1 + x + x3) = 1 + x2 + x3 + x4,

a2(x) = 1 + x + x3,

ℓ(x) = (1 + u)(1 + x + x4)(1 + x3 + x4) = (1 + u)(1 + x + x3 + x4 + x5 + x7 + x8).

We note that the polynomials above are obtained from the factorizations of (x15 − 1) and (x7 − 1) in
R[x]. One can make use of the factorization in Z2[x] since this also holds over R. Moreover, we can
calculate the following polynomials:

g1(x)h1(x) = x15 − 1⇒ h1(x) = 1 + x2 + x3 + x4 + x6,

AIMS Mathematics Volume 9, Issue 5, 11076–11091.
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g2(x)h2(x) = x7 − 1⇒ h2(x) = 1 + x2 + x3.

Hence, using the spanning sets in Theorem 2.3, we have the generator matrix for C as

G =



u+1 0 u+1 u+1 0 0 u+1 u+1 0 u+1 0 0 0 0 0 0 0 0 0 0 0 0
0 u+1 0 u+1 u+1 0 0 u+1 u+1 0 u+1 0 0 0 0 0 0 0 0 0 0 0
0 0 u+1 0 u+1 u+1 0 0 u+1 u+1 0 u+1 0 0 0 0 0 0 0 0 0 0
0 0 0 u+1 0 u+1 u+1 0 0 u+1 u+1 0 u+1 0 0 0 0 0 0 0 0 0
0 0 0 0 u+1 0 u+1 u+1 0 0 u+1 u+1 0 u+1 0 0 0 0 0 0 0 0
0 0 0 0 0 u+1 0 u+1 u+1 0 0 u+1 u+1 0 u+1 0 0 0 0 0 0 0

u+1 u+1 0 u+1 u+1 u+1 0 u+1 u+1 0 0 0 0 0 0 u+1 u 1 u+1 1 0 0
0 u+1 u+1 0 u+1 u+1 u+1 0 u+1 u+1 0 0 0 0 0 0 u+1 u 1 u+1 1 0
0 0 u+1 u+1 0 u+1 u+1 u+1 0 u+1 u+1 0 0 0 0 0 0 u+1 u 1 u+1 1

u+1 u+1 u+1 u+1 0 0 0 u+1 0 u+1 0 u+1 0 0 0 u u u u u u u


.

Furthermore, the Gray image Φ(C) of C is a binary linear code with parameters [44, 19, 6].

3. The structure of the dual double-cyclic codes

In this section, we study the structure of the dual of free R-double cyclic codes with using the similar
approach given in [5,10]. Let f (x) = a0+a1x+ . . .+an−1xn−1 be any element in the ring R[x]/ (xn − 1) .
Note that in this description, ai might equal 0 for any i = 0, 1, . . . , n − 1. From now on, the polynomial
f ∗(x) will denote f ∗(x) = xn−1 f (1/x) = an−1 + an−2x + . . . a0xn−1, i.e., if an−1 , 0, then f ∗(x) is the
reciprocal of f (x). By definition, we note that f ∗∗(x) = f (x).

Let (a0, a1, . . . , ar−1, b0, b1 . . . , bs−1) ∈ Rr × Rs and the cyclic shift of this codeword be T (a, b) =
(ar−1, a0, . . . , ar−2, bs−1, b0, . . . , bs−2). It is clear that the set {(a, b) ,T (a, b) ,T 2 (a, b) , . . . ,T m−1 (a, b)}
produces all the cyclic shifts of (a, b), where m = lcm(r, s).

We will give the relation between the inner product and the polynomial product, which relies on
the cyclic shifts in Rr × Rs. This approach was originally introduced in [5]. Let
V = (a0, a1, . . . , ar−1, b0, b1, . . . , bs−1) , W = (d0, d1, . . . , dr−1, e0, e1, . . . , es−1) ∈ Rr × Rs, and, without
loss of generality, suppose r ≤ s, then

⟨V,T (W)⟩ = a0dr−1 + a1d0 + . . . + ar−1dr−2︸                                ︷︷                                ︸
ω0

+ b0es−1 + b1e0 + . . . + bs−1es−2︸                                ︷︷                                ︸
σ0

= ω0 + σ0.

In general,

⟨V,T i(W)⟩ = a0dr−i + a1dr−i+1 + . . . + ar−1dr−i−1 + b0es−i + . . . + bs−1es−i−1

= ω(i−1) mod r + σ(i−1) mod s,

for all i = 1, 2, . . . ,m where m = lcm (r, s) . Now, construct the polynomial

Z(x) = (ω0 + σ0) + (ω1 + σ1) x + · · · +
(
ω(r−1) mod r + σ(r−1) mod s

)
xr−1

+ (ωr mod r + σr mod s) xr + · · · +
(
ω(s−1) mod r + σ(s−1) mod s

)
xr−1

+ (ωs mod r + σs mod s) xs + · · · +
(
ω(m−1) mod r + σ(m−1) mod s

)
xm−1.

Simplifying Z(x), we have

Z(x) =
(
a(x)d∗(x) mod (xr − 1)

(
xm − 1
xr − 1

)
+ b(x)e∗(x) mod (xs − 1)

(
xm − 1
xs − 1

))
.

So, we can give the following proved theorem.

AIMS Mathematics Volume 9, Issue 5, 11076–11091.



11084

Theorem 3.1. Let V =
(
a0,a1, . . . , ar−1, b0, b1, . . . , bs−1

)
, W = (d0, d1, . . . , dr−1, e0, e1, . . . , es−1) ∈ Rr ×

Rs, then V is orthogonal to W and all its cyclic shifts if, and only if,

Z(x) = [a(x)d∗(x) mod (xr − 1)]
(

xm − 1
xr − 1

)
+ [b(x)e∗(x) mod (xs − 1)]

(
xm − 1
xs − 1

)
= 0 mod (xm − 1) .

This equation can be written as

Z(x) = [a(x)d∗(x)]
(

xm − 1
xr − 1

)
+ [b(x)e∗(x)]

(
xm − 1
xs − 1

)
= 0 mod (xm − 1) .

Let us consider the free double cyclic code C = ⟨(g1(x) + ua1(x), 0) , (ℓ(x), g2(x) + ua2(x))⟩ in Rr,s.

Since C is free, it is clear that a1(x) = a2(x) = 0.

Let d(x) = gcd (g1(x), ℓ(x)). Since g1(x)|
xs − 1
g2(x)

ℓ(x), we can write
(

xs − 1
g2(x)

ℓ(x)
)
= g1(x)β(x). Since

d(x) = gcd (g1(x), ℓ(x)), we have α1(x)ℓ(x) + α2(x)g1(x) = d(x), g1(x) = d(x)d1(x), ℓ(x) =

d(x)d2(x),
xs − 1
g2(x)

ℓ(x) = g1(x)β(x) = d(x)d1(x)β(x).

Now, since C is a free double cyclic code, we have g1(x)| (xr − 1) and also g1(x) = d(x)d1(x), then
xr − 1 = g1(x)h1(x) = d(x)d1(x)h1(x). Therefore,

xs − 1
g2(x)

d(x) =
xs − 1
g2(x)

[
α1(x)ℓ(x) + α2(x)g1(x)

]
= α1(x)g1(x)β(x) + α2(x)

xs − 1
g2(x)

g1(x)

= g1(x)
[
α1(x)β(x) + α2(x)

xs − 1
g2(x)

]
︸                           ︷︷                           ︸

θ(x)

.

So, we have

xs − 1
g2(x)

d(x) = g1(x)θ(x)

(xs − 1) d(x) = g2(x)g1(x)θ(x) = g2(x)d(x)d2(x)θ(x).

Therefore, xs − 1 = g2(x)d2(x)θ(x) and θ(x) is a factor of xs − 1.

Lemma 3.1. Let C = ⟨(g1(x), 0) , (ℓ(x), g2(x))⟩ be a free double cyclic code in Rr,s, then the code C is
orthogonal to the code

D =

〈((
xr − 1
d(x)

)∗
, 0

)
,

((
α1(x)

xr − 1
g1(x)

)∗
, (θ(x))∗

)〉
where d(x), α1(x), and θ(x) are defined above.

Proof. Let C = ⟨(g1(x), 0) , (ℓ(x), g2(x))⟩ be a free R-double cyclic code and g1(x)h1(x) = xr − 1, then
by using polynomial multiplication Z(x) defined before, we have

(g1(x), 0) ·
(

xr − 1
d(x)

, 0
)∗
=

(
g1(x)

xr − 1
d(x)

mod (xr − 1)
)

xm − 1
xr − 1

AIMS Mathematics Volume 9, Issue 5, 11076–11091.



11085

=

(
d(x)d1(x)

xr − 1
d(x)

mod (xr − 1)
)

xm − 1
xr − 1

= 0 mod (xm − 1)

(ℓ(x), g2(x)) ·
(

xr − 1
d(x)

, 0
)∗
=

(
ℓ(x)

xr − 1
d(x)

mod (xr − 1)
)

xm − 1
xr − 1

=

(
d(x)d2(x)

xr − 1
d(x)

mod (xr − 1)
)

xm − 1
xr − 1

= 0 mod (xm − 1)

(g1(x), 0) ·
(
α1(x)

xr − 1
g1(x)

, θ(x)
)∗
= g1(x)

(
α1(x)

xr − 1
g1(x)

mod (xr − 1)
)

xm − 1
xr − 1

= 0 mod (xm − 1) .

Now, we will find the product of the last generator polynomials.

(ℓ(x), g2(x)) ·
(
α1(x)

xr − 1
g1(x)

, θ(x)
)∗
=

(
ℓ(x)α1(x)

xr − 1
g1(x)

mod (xr − 1)
) (

xm − 1
xr − 1

)
+ (g2(x)θ(x) mod (xs − 1))

(
xm − 1
xs − 1

)
= (d(x) + α2(x)g1(x))︸                  ︷︷                  ︸

α1(x)ℓ(x)

xr − 1
g1(x)

(
xm − 1
xr − 1

)

+g2(x)
(

xs − 1
d2(x)g2(x)

) (
xm − 1
xs − 1

)
= d(x)

xr − 1
g1(x)

(
xm − 1
xr − 1

)
+

xs − 1
d2(x)

(
xm − 1
xs − 1

)
= d(x)

xr − 1
g1(x)

(
xm − 1
xr − 1

)
+

xs − 1
d2(x)

d(x)h1(x)
d(x)h1(x)

(
xm − 1
xs − 1

)
= d(x)

xr − 1
g1(x)

(
xm − 1
xr − 1

)
+

xs − 1
xr − 1

d(x)h1(x)
(

xm − 1
xs − 1

)
= d(x)

xr − 1
g1(x)

(
xm − 1
xr − 1

)
+ d(x)

xr − 1
g1(x)

(
xm − 1
xr − 1

)
= 0 mod (xm − 1) .

Hence, we have

(ℓ(x), g2(x)) ·
(
α1(x)

xr − 1
g1(x)

, θ(x)
)∗
= 0 mod (xm − 1) .

Consequently, the code C is orthogonal to the codeD. □

Lemma 3.2. Let C = ⟨(g1(x), 0) , (ℓ(x), g2(x))⟩ be a free double cyclic code in Rr,s. Let

D =

〈((
xr − 1
d(x)

)
, 0

)
, (M(x), θ(x))

〉
with the generators as above, where M(x) = α1(x)

xr − 1
g1(x)

, then
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(1)
(

xr − 1
d(x)

)
is a factor of (xr − 1) , θ(x) is a factor of (xs − 1) .

(2)
(

xr − 1
d(x)

)
|

((
xs − 1
θ(x)

)
M(x)

)
.

Proof. See the proof of Lemma 5 in [5]. □

Lemma 3.3. Let C = ⟨(g1(x), 0) , (ℓ(x), g2(x))⟩ be a free double cyclic code in Rr,s. Let

D =

〈((
xr − 1
d(x)

)
, 0

)
, (M(x), θ(x))

〉
, thenD has 4deg d4(s−deg θ) codewords.

Proof. Since the generators of D have the same properties as the generators of C in Theorem 2.3, the
result follows from Theorem 2.3. □

Lemma 3.4. Let C = ⟨(g1(x), 0) , (ℓ(x), g2(x))⟩ be a free double cyclic code in Rr,s. Let

D =

〈((
xr − 1
d(x)

)
, 0

)
, (M(x), θ(x))

〉
, then |C| |D| = 4n.

Proof. We know that |C| = 4r−deg g14s−deg g2 and |D| = 4deg d4(s−deg θ). Since
xs − 1
g2(x)

d(x) = g1(x)θ(x), we

have

s − deg θ = s −
(
s + deg d − deg g2 − deg g1

)
= deg g2 + deg g1 − deg d.

Therefore, |C| |D| = 4q, where

q = r − deg g1 + s − deg g2 + deg d + deg g2 + deg g1 − deg d

= r + s = n.

So, |C| |D| = 4n. □

Finally, we will give the following theorem that determines the generators of a dual of a free double
cyclic code C.

Theorem 3.2. If C = ⟨(g1(x), 0) , (ℓ(x), g2(x))⟩ is a free double cyclic code in Rr,s, then

C⊥ =

〈((
xr − 1
d(x)

)∗
, 0

)
,

((
α1(x)

xr − 1
g1(x)

)∗
, (θ(x))∗

)〉
.

Example 3.1. Let C be a double cyclic code in R[x]/(x7 − 1) × R[x]/(x7 − 1) generated by
((g1(x) + ua1(x), 0), (ℓ(x), g2(x) + ua2(x))), where

g1(x) = (1 + x + x3)(1 + x2 + x3) = 1 + x + x2 + x3 + x4 + x5 + x6, a1(x) = x7 − 1,
g2(x) = 1 + x + x3, a2(x) = x7 − 1,
ℓ(x) = 1 + x + x3.

Furthermore, we can calculate the following polynomials:

g1(x)h1(x) = x7 − 1⇒ h1(x) = 1 + x,
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g2(x)h2(x) = x7 − 1⇒ h2(x) = 1 + x + x2 + x4.

Hence, using the spanning sets in Theorem 2.3, we have the generator matrix for C as

G =


1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 1 0 1 0 0 0
0 1 1 0 1 0 0 0 1 1 0 1 0 0
0 0 1 1 0 1 0 0 0 1 1 0 1 0
0 0 0 1 1 0 1 0 0 0 1 1 0 1


.

Furthermore, the Gray image Φ(C) of C is a binary linear code with parameters [28, 10, 6].
Now, let us find the generator matrix of the dual cyclic code C⊥ by considering Theorem 3.2 as

follows. First, we will determine the generator polynomials of the dual code.

d(x) = gcd(ℓ(x), g1(x)) = 1 + x + x3,

h2(x)ℓ(x) = g1(x)β(x)⇒ β(x) = 1 + x,

α1(x)ℓ(x) + α2(x)g1(x) = d(x)⇒ α1(x) = 1, α2(x) = 0,
θ(x) = α1(x)β(x) + α2(x)h2(x) = 1 + x,

M(x) = α1(x)h1(x) = 1 + x.

Therefore, C⊥ =
〈((

1 + x + x2 + x4
)∗
, 0

)
, ((1 + x)∗ , (1 + x)∗)

〉
and the the parity-check matrix of C is

H =



0 0 1 0 1 1 1 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 1 1
1 0 0 0 0 0 1 1 0 0 0 0 0 1
1 1 0 0 0 0 0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0 0 0 1 1 0 0


.

Moreover, Φ(C⊥) has the parameters [28, 18, 4] which are very close to the optimal
parameters [28, 18, 5].

Let C = ⟨(g1(x), 0) , (ℓ(x), g2(x))⟩ be a self-dual free double cyclic code in Rr,s, then C = C⊥, so we
have the following results.

(1)
(

xr − 1
d(x)

)∗
= g1(x) =⇒ xr − 1 = g1(x)(d(x))∗.

(2)
(
α1(x)β(x) + α2(x)

xs − 1
g2(x)

)∗
= g2(x)

=⇒ α1(x)β(x) + α2(x)
xs − 1
g2(x)

= (g2(x))∗

=⇒ α2(x)
xs − 1
g2(x)

= α1(x)β(x) + (g2(x))∗

=⇒ xs − 1 =
g2(x)
α2(x)

(α1(x)β(x) + (g2(x))∗).
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(3) ((M(x))∗, (θ(x))∗) = k1(x)(g1(x), 0) + k2(x)(ℓ(x), g2(x)), then (M(x))∗ = k1(x)g1(x) + k2(x)ℓ(x).

We also know from Theorem 3.2 that (M(x))∗ =
(

xr − 1
g1(x)

α1(x)
)∗

and also from (1) that we have

xr − 1 = g1(x)(d(x))∗, so

xr − 1 = g1(x)(d(x))∗ =⇒
(

xr − 1
g1(x)

)∗
= d(x).

Therefore, d(x)(α(x))∗ = k1(x)g1(x) + k2(x)ℓ(x), and we have

(α(x))∗ = k1(x)
g1(x)
d(x)

+ k2(x)
ℓ(x)
d(x)
.

Since gcd
(
g1(x)
d(x)
,
ℓ(x)
d(x)

)
= 1, we have (α1(x))∗ = 1 and α1(x) = 1.

Example 3.2. Let C be a free R-double cyclic code in R7 × R7 with C = ⟨((g1(x), 0), (ℓ(x), g2(x)))⟩,
where

g1(x) = 1 + x2 + x3 + x4, ℓ(x) = 1 + x + x3 = g2(x).

Therefore, C has the following generator matrix

G =



1 0 1 1 1 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 1 0 1 0 0 0
0 1 1 0 1 0 0 0 1 1 0 1 0 0
0 0 1 1 0 1 0 0 0 1 1 0 1 0
0 0 0 1 1 0 1 0 0 0 1 1 0 1


.

Furthermore, the dual code is C⊥ = ⟨(ḡ1(x), 0), (ℓ̄(x), ḡ2(x))⟩ with

ḡ1(x) = x2 + x4 + x5 + x6, ℓ̄(x) = x3 + x4 + x6 = ḡ2(x)

and has the generator matrix of the form

H =



0 0 1 0 1 1 1 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 1 1 0 1
1 0 0 0 1 1 0 1 0 0 0 1 1 0
0 1 0 0 0 1 1 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1 0 1 0 0 0 1


.

Since GHT = 0 and the dimensions of C and C⊥ are the same, C is a self-dual R-double cyclic code
with the parameters [28, 14, 4] of Φ(C).
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In Table 1, we present several examples of optimal binary linear codes, which are actually the Gray
images of R-double cyclic codes. We use the table of codes in reference [11] that contains a database of
optimal linear codes with respect to the Hamming distance according to their lengths and dimensions.
We obtain these optimal codes by direct construction with no puncturing or shortening.

Table 1. Table of optimal parameter binary linear codes derived from R-double cyclic codes.

Generators [r, s]-type Parameter
g1(x) = 1 + x, a1(x) = x3 − 1

g2(x) = 1 = ℓ(x), a2(x) = x3 − 1
[3, 3] [12, 10, 2]

g1(x) = x3 − 1 = a1(x)
g2(x) = x7 − 1, a2(x) = 1 + x + x2 + x3 + x4 + x5 + x6

ℓ(x) = u
(
x2 + x + 1

) [3, 7] [20, 1, 20]

g1(x) = 1 + x + x2, a1(x) = x3 − 1
g2(x) = 1, a2(x) = x9 − 1

ℓ(x) = 1 + x
[3, 9] [24, 20, 2]

g1(x) = 1 + x + x2, a1(x) = x3 − 1
g2(x) = 1, a2(x) = x15 − 1

ℓ(x) = 1 + x
[3, 15] [36, 32, 2]

g1(x) = x7 − 1 = a1(x)
g2(x) = x7 − 1, a2(x) = 1 + x2 + x3 + x4

ℓ(x) = u(1 + x2 + x3 + x4)
[7, 7] [28, 3, 16]

g1(x) = x9 − 1 = a1(x)
g2(x) = x9 − 1, a2(x) = 1 + x + x3 + x4 + x6 + x7

ℓ(x) = u(1 + x2 + x3 + x5 + x6 + x8)
[9, 9] [36, 2, 24]

g1(x) = x11 − 1 = a1(x)
g2(x) = x7 − 1, a2(x) = 1 + x + x2 + x3 + x4 + x5 + x6

ℓ(x) = u
(
x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

) [11, 7] [36, 1, 36]

g1(x) = x11 − 1 = a1(x) = g2(x)
a2(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1
ℓ(x) = u

(
x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

) [11, 11] [44, 1, 44]

g1(x) = x15 − 1 = a1(x)
g2(x) = x15 − 1, a2(x) = x11 + x10 + x9 + x8 + x6 + x4 + x3 + 1

ℓ(x) = u
(
x11 + x10 + x9 + x8 + x6 + x4 + x3 + 1

) [15, 15] [60, 4, 32]

g1(x) = x15 − 1 = a1(x)
g2(x) = x15 − 1, a2(x) = x13 + x12 + x10 + x9 + x7 + x6 + x4 + x3 + x + 1

ℓ(x) = u
(
x13 + x12 + x10 + x9 + x7 + x6 + x4 + x3 + x + 1

) [15, 15] [60, 2, 40]

4. Gray images of R-double cyclic codes

We have defined the below Gray map in the first part of the paper. Now, we will talk about the Gray
images of R-double cyclic codes. We know that the Gray map Φ is linear and the images of R-double
cyclic codes under this map are binary linear codes. For a = (x0 + uy0, . . . , xr−1 + uyr−1) ∈ Rr, b =
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(p0 + uq0, . . . , ps−1 + uqs−1) ∈ Rs, we have

Φ : Rr × Rs → Z2n
2

(a, b)→ (y0, . . . yr−1, x0 ⊕ y0, . . . , xr−1 ⊕ yr−1, q0, . . . , qs−1, p0 ⊕ q0, . . . , ps−1 ⊕ qs−1)

where xi ⊕ yi = xi + yi mod 2, 0 ≤ i ≤ r − 1, p j ⊕ q j = p j + q j mod 2, 0 ≤ j ≤ s − 1, and n = r + s.

Theorem 4.1. Let C be a double cyclic code in Rr,s.

(1) If r = s, then Φ (C) is a binary QC-code of index 4.
(2) If r , s, then Φ (C) is a binary GQC-code ( [13]) of index 4.

Proof. The proof of this theorem is similar to the proof of Theorem 9 in [5]. □

5. Conclusions

In this paper, we studied the algebraic structure of R-double cyclic codes and their duals where
R = Z2 + uZ2 = {0, 1, u, 1 + u} is the ring with four elements and u2 = 0. We gave the generator
polynomials of both the R-double cyclic code C and its dual code C⊥. We also presented examples of
optimal parameter binary linear codes that are Gray images of R-double cyclic codes. In the present
paper, we have chosen the lengths r and s as odd integers, since R[x]/(xn−1) is a principal ideal ring for
an odd integer n. In our case, cyclic codes over R can be generated using only one generator. However,
when n is not odd, R[x]/(xn − 1) is not a principal ideal ring, and cyclic codes over R can be generated
by two generators [2]. Therefore, exploring double cyclic codes over R with even lengths for future
research could be interesting.
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