Research article Special Issues

On Hadamard $ 2 $-$ (51, 25, 12) $ and $ 2 $-$ (59, 29, 14) $ designs

  • Received: 16 June 2024 Revised: 22 July 2024 Accepted: 24 July 2024 Published: 29 July 2024
  • MSC : 05B05, 05B20, 94B05

  • In this paper, we classified Hadamard $ 2 $-$ (51, 25, 12) $ designs having a non-abelian automorphism group of order 10, i.e., $ {\rm{Frob}}_{10} \cong Z_5:Z_2 $, where a subgroup isomorphic to $ Z_2 $ fixed setwise all the $ Z_5 $-orbits of the sets of points and blocks. Furthermore, we classified $ 2 $-$ (59, 29, 14) $ designs having a non-abelian automorphism group of order 14, i.e., $ {\rm{Frob}}_{14} \cong Z_7:Z_2 $, where a subgroup isomorphic to $ Z_2 $ fixed setwise all the $ Z_7 $-orbits of the sets of points and blocks. We also showed that there was no Hadamard $ 2 $-$ (59, 29, 14) $ design with automorphism group $ {\rm{Frob}}_{21} \cong Z_7:Z_3 $, where a subgroup of order 3 fixed setwise all the $ Z_7 $-orbits of points and blocks. Additionally, we used Hadamard $ 2 $-$ (59, 29, 14) $ designs obtained to construct ternary linear codes and linear codes over the finite field of order 5. We constructed ternary self-dual codes and self-dual codes over the finite field of order 5 from the corresponding Hadamard matrices of order 60.

    Citation: Doris Dumičić Danilović, Andrea Švob. On Hadamard $ 2 $-$ (51, 25, 12) $ and $ 2 $-$ (59, 29, 14) $ designs[J]. AIMS Mathematics, 2024, 9(8): 23047-23059. doi: 10.3934/math.20241120

    Related Papers:

  • In this paper, we classified Hadamard $ 2 $-$ (51, 25, 12) $ designs having a non-abelian automorphism group of order 10, i.e., $ {\rm{Frob}}_{10} \cong Z_5:Z_2 $, where a subgroup isomorphic to $ Z_2 $ fixed setwise all the $ Z_5 $-orbits of the sets of points and blocks. Furthermore, we classified $ 2 $-$ (59, 29, 14) $ designs having a non-abelian automorphism group of order 14, i.e., $ {\rm{Frob}}_{14} \cong Z_7:Z_2 $, where a subgroup isomorphic to $ Z_2 $ fixed setwise all the $ Z_7 $-orbits of the sets of points and blocks. We also showed that there was no Hadamard $ 2 $-$ (59, 29, 14) $ design with automorphism group $ {\rm{Frob}}_{21} \cong Z_7:Z_3 $, where a subgroup of order 3 fixed setwise all the $ Z_7 $-orbits of points and blocks. Additionally, we used Hadamard $ 2 $-$ (59, 29, 14) $ designs obtained to construct ternary linear codes and linear codes over the finite field of order 5. We constructed ternary self-dual codes and self-dual codes over the finite field of order 5 from the corresponding Hadamard matrices of order 60.



    加载中


    [1] M. Araya, M. Harada, V. D. Tonchev, Hadamard matrices of orders 60 and 64 with automorphisms of orders 29 and 31, Electron. J. Combin., 31 (2024), Article number P1.50. https://doi.org/10.37236/12249 doi: 10.37236/12249
    [2] M. Araya, M. Harada, K. Momihara, Hadamard matrices related to a certain series of ternary self-dual codes, Des. Codes Cryptogr., 91 (2023), 795–805. https://doi.org/10.1007/s10623-022-01127-y doi: 10.1007/s10623-022-01127-y
    [3] T. Beth, D. Jungnickel, H. Lenz, Design Theory, Second Edition, Cambridge University Press, Cambridge, 1999. https://doi.org/10.1017/CBO9780511549533
    [4] W. Bosma, J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, 1994.
    [5] V. Ćepulić, On Symmetric Block Designs (40, 13, 4) with Automorphisms of Order 5, Discrete Math., 128 (1994), 45–60. https://doi.org/10.1016/0012-365X(94)90103-1 doi: 10.1016/0012-365X(94)90103-1
    [6] M. Chiarandini, I. S. Kotsireas, C. Koukouvinos, L. Paquete, Heuristic algorithms for Hadamard matrices with two circulant cores, Theoret. Comput. Sci., 407 (2008), 274–277. https://doi.org/10.1016/j.tcs.2008.06.002 doi: 10.1016/j.tcs.2008.06.002
    [7] C. J. Colbourn, J.H. Dinitz, Handbook of Combinatorial Designs, Second Edition, Chapman & Hall/CRC, New York, 2007. https://doi.org/10.1201/9781420010541
    [8] R. Craigen, H. Kharaghani, Hadamard Matrices and Hadamard Designs, in: Handbook of Combinatorial Designs, $2^{{\rm{nd}}} $ ed., C.J. Colbourn, J.H. Dinitz (eds.), (2007), 273–280. Chapman & Hall/CRC Press.
    [9] D. Crnković, M.-O. Pavčević, Some new symmetric designs with parameters (64, 28, 12), Discrete Math., 237 (2001), 109–118. https://doi.org/10.1016/S0012-365X(00)00364-2 doi: 10.1016/S0012-365X(00)00364-2
    [10] D. Crnković, S. Rukavina, Construction of block designs admitting an Abelian automorphism group, Metrika, 62 (2005), 175–183. https://doi.org/10.1007/s00184-005-0407-y doi: 10.1007/s00184-005-0407-y
    [11] D. Crnković, D. Dumičić Danilović, S. Rukavina, On symmetric (78, 22, 6) designs and related self-orthogonal codes, Utilitas Math., 109 (2018), 227–253.
    [12] P. Dembowski, Verallgemeinerungen von Transitivitätsklassen endlicher projektiver Ebenen, Math. Z., 69 (1958), 59–89. https://doi.org/10.1007/BF01187393 doi: 10.1007/BF01187393
    [13] J. D. Dixon, B. Mortimer, Permutation Groups, Springer New York, 1996. https://doi.org/10.1007/978-1-4612-0731-3
    [14] D. Ž. Djoković, Hadamard matrices from base sequences: an example, Int. Math. Forum, 6 (2011), 795–814.
    [15] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.8.4, 2016. Available from: http://www.gap-system.org.
    [16] N. Hamada, On the $p$–rank of the incidence matrix of a balanced or partially balanced incomplete block design and it applications to error correcting codes, Hiroshima Math. J., 3 (1973), 153–226. https://doi.org/10.32917/hmj/1206137446 doi: 10.32917/hmj/1206137446
    [17] M. Harada, Binary extremal self-dual codes of length 60 and related codes, Des. Codes Cryptogr., 86 (2018), 1085–1094. https://doi.org/10.1007/s10623-017-0380-2 doi: 10.1007/s10623-017-0380-2
    [18] M. Harada, K. Ishizuka, H. Kharaghani, Ternary extremal four-negacirculant self-dual codes, Graphs Combin., 40 (2024), 1–8. https://doi.org/10.1007/s00373-024-02788-3 doi: 10.1007/s00373-024-02788-3
    [19] W. C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511807077
    [20] Z. Janko, Coset enumeration in groups and constructions of symmetric designs, Combinatorics '90 (Gaeta, 1990), Ann. Discrete Math., 52 (1992), 275–277. https://doi.org/10.1016/S0167-5060(08)70919-1 doi: 10.1016/S0167-5060(08)70919-1
    [21] Z. Janko, T. van Trung, Construction of a new symmetric block design for (78, 22, 6) with the help of tactical decompositions, J. Combin. Theory Ser. A, 40 (1985), 451–455. https://doi.org/10.1016/0097-3165(85)90107-4 doi: 10.1016/0097-3165(85)90107-4
    [22] H. Kharaghani, B. Tayfeh-Rezaie, A Hadamard matrix of order 428, J. Combin. Des., 13 (2005), 435–440. https://doi.org/10.1002/jcd.20043 doi: 10.1002/jcd.20043
    [23] C. Koukouvinos, S. Stylianou, On skew-Hadamard matrices, Discrete Math., 308 (2008), 2723–2731. https://doi.org/10.1016/j.disc.2006.06.037 doi: 10.1016/j.disc.2006.06.037
    [24] I. S. Kotsireas, C. Koukouvinos, New skew-Hadamard matrices via computational algebra, Australas. J. Combin., 41 (2008), 235–248.
    [25] E. Lander, Symmetric Designs: An Algebraic Approach, Cambridge University Press, Cambridge, 1983. https://doi.org/10.1017/CBO9780511662164
    [26] D. R. Stinson, Combinatorial Designs: Constructions and Analysis, Springer, New York, 2004.
    [27] N. Yankov, D. Anev, On the self-dual codes with an automorphism of order 5, Appl. Algebra Engrg. Comm. Comput., 32 (2021), 97–111. https://doi.org/10.1007/s00200-019-00403-0 doi: 10.1007/s00200-019-00403-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(172) PDF downloads(18) Cited by(0)

Article outline

Figures and Tables

Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog