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Abstract: In this paper, we classified Hadamard 2-(51, 25, 12) designs having a non-abelian
automorphism group of order 10, i.e., Frob10 � Z5 : Z2, where a subgroup isomorphic to Z2 fixed
setwise all the Z5-orbits of the sets of points and blocks. Furthermore, we classified 2-(59, 29, 14)
designs having a non-abelian automorphism group of order 14, i.e., Frob14 � Z7 : Z2, where a
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showed that there was no Hadamard 2-(59, 29, 14) design with automorphism group Frob21 � Z7 : Z3,
where a subgroup of order 3 fixed setwise all the Z7-orbits of points and blocks. Additionally, we used
Hadamard 2-(59, 29, 14) designs obtained to construct ternary linear codes and linear codes over the
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of order 5 from the corresponding Hadamard matrices of order 60.
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1. Introduction

It is well-known that a Hadamard matrix of order n can exist only if n = 1, 2 or n ≡ 0 mod 4. The
Hadamard conjecture states that these necessary conditions are also sufficient. Since the discovery of
a Hadamard matrix of order 428, the smallest open case is n = 668 (see [22]). In this paper, Hadamard
matrices of order 52 and 60 are obtained. In the literature, there are many studies concerning this
order and we mention few of them. In [23], the authors were interested in a construction of Hadamard
matrices of order 52, and in [24], the authors established the new lower bound for Hadamard matrices
of order 60. In [6], the authors obtained many new Hadamard matrices of order 60 via the genetic
algorithm. In [14], the author constructed many new inequivalent Hadamard matrices of order 60.

The existence of Hadamard 2-(51, 25, 12) designs and Hadamard 2-(59, 29, 14) designs is known
(see [7]), but the classification of designs with these parameters is not. In [1], the authors classify
designs with parameters 2-(59, 29, 14) having an automorphism group of order 29 and one fixed
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point and show that there are exactly 531 such designs. The classification of designs with particular
parameters is one of the most important topics in design theory. The Hadamard designs with parameters
2-(51, 25, 12) and 2-(59, 29, 14) assuming the action of the Frobenius groups of order 10 and 14 have
not been studied before. This result gives a contribution to the studies of designs from group theory
point of view. However, according to our best knowledge, in [7] there is information that the number of
known Hadamard 2-(51, 25, 12) is ≥ 1. We increase the number by constructing 17 new Hadamard 2-
(51, 25, 12) designs. Moreover, in this paper, we constructed 32 new Hadamard 2-(59, 29, 14) designs,
non-isomorphic to the ones obtained in [1].

In this paper, we show that, up to isomorphism, there are exactly 17 Hadamard 2-(51, 25, 12) designs
having a non-abelian automorphism group of order 10, i.e., Frob10 � Z5 : Z2, where a subgroup
isomorphic to Z2 fixes setwise all the Z5-orbits of the sets of points and blocks. Moreover, we show that
there are exactly 32 pairwise non-isomorphic Hadamard 2-(59, 29, 14) designs having a non-abelian
automorphism group of order 14, i.e., Frob14 � Z7 : Z2, where an involution fixes setwise all the
Z7-orbits of the sets of points and blocks. Further, we show that there is no Hadamard 2-(59, 29, 14)
design with automorphism group Frob21 � Z7 : Z3, where a subgroup isomorphic to Z3 fixes setwise
all the Z7-orbits of points and blocks. From the Hadamard designs obtained, we construct 9 pairwise
nonequivalent Hadamard matrices of order 52 and 8 pairwise nonequivalent Hadamard matrices of
order 60. From the Hadamard matrices of order 60, we construct ternary self-dual codes and self-dual
codes over the finite field of order 5.

The paper is organized as follows. In Section 2, we give basic definitions and properties of designs,
Hadamard matrices, and linear codes, and explain the method of constructing designs used in this
paper. In Section 3, we give constructions of Hadamard 2-(51, 25, 12) designs, while in Section 4 we
give constructions of Hadamard 2-(59, 29, 14) designs. In Section 5, we study codes from constructed
Hadamard 2-(59, 29, 14) designs and the corresponding Hadamard matrices.

Computer calculations in this paper were done by programs written for the system for computational
discrete algebra GAP [15], and Magma [4]. The programs are tested on the orbit matrices and designs
obtained in [5] and [9] by repeating the calculations given in these references. Each calculation is
repeated at least twice to test the correct work of the software.

The designs and the orbit matrices constructed in this paper can be found at

https://math.uniri.hr/˜ddumicic/results/Des51-59_Had52-60.html

2. Preliminaries

We assume that the reader is familiar with the basic facts of design theory and coding theory. We
refer the reader to [3,7] for the relevant reading in design theory and to [19] for the relevant reading in
coding theory.

A 2-(v, k, λ) design is a finite incidence structureD = (P,B,I), where P and B are disjoint sets and
I ⊆ P × B, with the following properties:

1. |P| = v and 1 < k < v − 1,
2. every element (block) of B is incident with exactly k elements (points) of P,
3. every two distinct points in P are together incident with exactly λ blocks of B.

In a 2-(v, k, λ) design, every point is incident with exactly r =
λ(v − 1)

k − 1
blocks, and r is called the
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replication number of a design. A 2-design is also called a block design. The number of blocks in a
block design is denoted by b. If v = b, a design is called symmetric. In a symmetric design, each two
blocks meet in exactly λ points. In case of symmetric designs, the notation (v, k, λ) design is often used.
An isomorphism from one block design to another is a bijective mapping of points to points and blocks
to blocks, which preserves incidence. An isomorphism from a block design D onto itself is called an
automorphism of D. The set of all automorphisms forms a group called the full automorphism group
ofD and is denoted by Aut(D). IfD is a block design, the incidence structureD′ having as points the
blocks ofD, and having as blocks the points ofD, where a point and a block are incident inD′ if, and
only if, the corresponding block and a point of D are incident, is a block design called the dual of D.
The design is called self-dual if the design and its dual are isomorphic.

IfD is a symmetric design and G ≤ Aut(D), then the action of G onD induces the same number of
orbits of the set of points and blocks, and G fixes the same number of points and blocks. Furthermore,
each automorphism g ∈ G has the same cyclic structure considered as a permutation on points or on
blocks. We say that a group G acts semi-standardly onD if the point orbit lengths distribution is equal
to the block orbit lengths distribution, and G acts standardly on D if every point orbit has length 1
or |G|. For further reading on symmetric designs and their automorphism groups, we refer the reader
to [25, 26]. We state the following propositions that will be used later, and they can be found in [25].

Proposition 2.1. Let α , 1 be an automorphism of a symmetric 2-(v, k, λ) design which fixes Fα points.
Then

Fα ≤ v − 2n and Fα ≤
λ

k −
√

n
v,

where n = k − λ. Moreover, if equality holds in either inequality, α must be an involution and every
non-fixed block contains exactly λ fixed points.

Proposition 2.2. Let D be a symmetric 2-(v, k, λ) design and α ∈ Aut(D). If α is an involution fixing
Fα , 0 points, then

Fα ≥
{

1 + k
λ
, for k, λ even,

1 + k−1
λ
, otherwise.

A Hadamard matrix of order n is a n × n (−1, 1)-matrix H such that HH⊤ = nIn. Two Hadamard
matrices are said to be equivalent if one can be transformed into the other by a series of row and column
permutations and negations. A Hadamard matrix is normalized if all entries in the first row and the
first column are 1. Hence, every Hadamard matrix is equivalent to a normalized Hadamard matrix.

Hadamard matrices are closely related to designs. Hadamard matrices of order 4t can be used to
obtain symmetric 2-designs with parameters (4t − 1, 2t − 1, t − 1) or (4t − 1, 2t, t), which are called
Hadamard 2-designs (see [8]). The construction is reversible, i.e., from symmetric 2-designs with
these parameters, one can construct Hadamard matrices.

A q-ary linear code C of dimension k for a prime power q is a k-dimensional subspace of a vector
space Fn

q. Elements of C are called codewords. If q = 2, a code C is called binary, and for q = 3, a
code is called ternary. Let x = (x1, ..., xn) and y = (y1, ..., yn) ∈ Fn

q. The Hamming distance between
words x and y is the number d(x, y) = |{i : xi , yi}|. The minimum distance of the code C is defined
by d = min{d(x, y) : x, y ∈ C, x , y}. The weight of a codeword x is w(x) = d(x, 0) = |{i : xi , 0}|.
A code for which all codewords have weight divisible by four is called doubly-even, and singly even
if all weights are even and there is at least one codeword x with w(x) ≡ 2 mod 4. For a linear code,
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d = min{w(x) : x ∈ C, x , 0}. A q-ary linear code of length n, dimension k, and distance d is called
a [n, k, d]q code. We may use the notation [n, k] if the parameters d and q are unspecified. The dual
code C⊥ is the orthogonal complement under the standard inner product, i.e., ⟨· , ·⟩, i.e. C⊥ = {v ∈ Fn

q :
⟨v, c⟩ = 0 for all c ∈ C}. A code C is self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥. A ternary
self-dual code of length n exists if, and only if, n is divisible by four. We say that a code is optimal if
it has the largest minimum weight among all codes of that length and dimension.

P. Dembowski introduced the notion of a tactical decomposition of an incidence structure and
showed that the orbits of an automorphism group acting on an incidence structure I induce a tactical
decomposition of I (see [12]). Tactical decompositions induced by the action of an automorphism
group leads us to orbit matrices of incidence structures, which have been successfully used for a
construction of block designs for more than 40 years; see for example, in [9–11, 20, 21]. The designs
constructed in this paper are obtained using orbit matrices of symmetric designs. The first step of
the method is the construction of orbit matrices for the assumed action of an automorphism group on
a design, and the second step is the construction of incidence matrices of designs from the obtained
orbit matrices. This second step is often called the indexing of orbit matrices. We briefly describe the
construction of designs, but more details about this construction can be found in [20].

Let D be a 2-(v, k, λ) design and G ≤ Aut(D). We denote G-orbits of points and blocks by
P1, . . . ,Pm and B1, . . . ,Bn, respectively, and put |Pi| = ωi, |B j| = Ω j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. It
holds that

∑m
i=1 ωi = v, and also

∑n
j=1Ω j = b.

Further, by ti j we denote the number of blocks in B j incident with the representative of the point
orbitPi, i.e., ti j = |{B ∈ B j | (P, B) ∈ I, P ∈ Pi}|. Analogously, bi j is the number of points inPi incident
with the representative of the block orbit B j, i.e., bi j = |P ∈ Pi | (P, B) ∈ I, B ∈ B j|. The numbers ti j

and bi j do not depend on the choice of the representatives of point and block orbits, respectively.
The following conditions for ti j hold (see [10] and [20]):

0 ≤ ti j ≤ Ω j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (2.1)
n∑

j=1

ti j = r, 1 ≤ i ≤ m, (2.2)

m∑
i=1

ωi

Ω j
ti j = k, 1 ≤ j ≤ n, (2.3)

n∑
j=1

ωs

Ω j
ts jts′ j = λωs + δss′ · (r − λ), 1 ≤ s, s′ ≤ m. (2.4)

A (m × n) matrix T = [ti j] with entries satisfying conditions (2.1) − (2.4) is called a point orbit
matrix of a 2-(v, k, λ) design with orbit lengths distributions (ω1, . . . , ωm) and (Ω1, . . . ,Ωn). A (l × n)
matrix [ti j], for l < m, with entries satisfying conditions (2.1), (2.2), (2.4), and the condition

l∑
i=1

ωi

Ω j
ti j ≤ k, 1 ≤ j ≤ n,

is called a partial point orbit matrix of a 2-(v, k, λ) design with orbit lengths distributions (ω1, . . . , ωm)
and (Ω1, . . . ,Ωn).
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IfD is a symmetric 2-(v, k, λ) design, then also the following equation holds:

m∑
i=1

ωi

Ωs
tistit = λΩt + δst(r − λ), 1 ≤ s, t ≤ n. (2.5)

The set of indices of blocks in a G-orbit B j indicating which blocks of B j are incident with the
representative of a G-orbit of points Pi is called the index set for an entry ti j in a point orbit matrix, for
i ∈ {1, . . .m} and j ∈ {1, . . . , n}.

In the construction of (partial) orbit matrices, it is very useful to reduce the number of those from
which isomorphic designs are constructed. This is achieved through appropriate permutations of rows
and columns, as stated in the following proposition (see [10, Theorem 4]).

Proposition 2.3. LetD = (P,B, I) be a 2-(v, k, λ) design, G ≤ Aut(D), and let the (m× n) matrix T be
a point orbit matrix of the design D with respect to the group G. Then, let g = (α, β) ∈ S = S m × S n

with the following properties:

1. if α(s) = t, then the stabilizer GPs is conjugate to GPt , where Ps, Pt ∈ P, Ps = PsG, and Pt = PtG,
2. if β(i) = j, then Gxi is conjugate to Gx j , where xi, x j ∈ B, Bi = xiG, B j = x jG.

Then, there exists a permutation g∗ ∈ CS (P)×S (B)(G), such that

α(s) = t if, and only if, g∗(Ps) = Pt, and

β(i) = j if, and only if, g∗(Bi) = B j.

Two orbit matrices T and T ′ are isomorphic if there is a permutation g = (α, β) ∈ S m × S n from T
onto T ′ = Tg that satisfies the conditions from Proposition 2.3. Isomorphic orbit matrices correspond
to isomorphic designs. Hence, while constructing designs from orbit matrices, it is sufficient to
construct designs from one orbit matrix from each isomorphism class of orbit matrices. So, during
the construction of (partial) orbit matrices, for the isomorph rejection we used the isomorphisms of
(partial) orbit matrices. For more details on this, we refer to [5] and [10].

3. Hadamard 2-(51, 25, 12) designs with automorphism group Frob10

In this section, we construct Hadamard 2-(51, 25, 12) designs having an automorphism group
Frob10 � D10. To analyze the action of a non-abelian group Frob10 � Z5 : Z2 on a 2-(51, 25, 12)
design, first we examine the action of its subgroup Z5 on that design and obtain the result given in the
following proposition.

Proposition 3.1. If an automorphism ρ of order 5 acts on a 2-(51, 25, 12) design, then it fixes exactly
one point.

Proof. If a 2-(51, 25, 12) designD admits an action of an automorphism ρ of order 5, then the number
of points fixed by ρ is Fρ ∈ {1, 6, 11, 16, 21}, since ρ acts on the set of points (and blocks) ofD in orbits
of length 1 or 5. By Proposition 2.1, it holds that Fρ ≤ 25.

If Fρ = 6, then the ⟨ρ⟩-orbit lengths distribution is (ω1, . . . , ω15) = (Ω1, . . . ,Ω15) =
(1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5). In this case, each point fixed by ρ is incident with 0 or 5 fixed
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blocks, since r = 25. Let P be a fixed point which is not incident with a fixed block. Then, the
point P together with each of the other 5 fixed points is incident with 5, 10, 15, 20, or 25 non-fixed
blocks, which is a contradiction, since λ = 12. Hence, each fixed point is incident with 5 fixed
blocks. Furthermore, any pair of fixed points are contained in 4 or 5 common fixed blocks, and in 5y,
y ∈ {0, 1, . . . , 4}, common non-fixed blocks. It yields to a contradiction since λ = 12.

It is easy to check that for Fρ ∈ {11, 16, 21}, there are no candidates for a row in a point orbit matrix
corresponding to an ⟨ρ⟩-orbit with non-fixed points that satisfies the properties (2.1), (2.2), and (2.4),
for s = s′. For example, if Fρ = 21, then Ω1 = Ω2 = . . . = Ω21 = 1 and Ω22 = Ω23 = . . . = Ω27 = 5.
For s ∈ {22, 23, . . . , 27}, the equation

5(t2
s1 + t2

s2 + . . . + t2
s21) + t2

s22 + t2
s23 + . . . + t2

s27 = 73

does not have a solution for ts1, ts2, . . . , ts21 ∈ {0, 1} and ts22, ts23, . . . , ts27 ∈ {0, 1, 2, 3, 4, 5}, under

assumption that
27∑
j=1

ts j = 25.

Therefore, it holds that Fρ = 1. □

Hence, an automorphism ρ of order 5 acts standardly on a 2-(51, 25, 12) design with the orbit
lengths distribution (ω1, . . . , ω11) = (1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5). It is easy to see that there is only
one candidate for the first row in a point orbit matrix that represents the point fixed by ρ, which is
[0, 5, 5, 5, 5, 5, 0, 0, 0, 0, 0] (up to permutations of columns that correspond to the block orbits of the
same length). Further, all possible candidates for rows from second to eleventh in a point orbit matrix
(up to permutations of columns that correspond to the block orbits of the same length) that correspond
to ⟨ρ⟩-orbits with non-fixed points are listed in Table 1. They satisfy the properties (2.1), (2.2), and
(2.4), for s = s′. Note that these candidates for rows are called types in [5].

Table 1. Candidates for rows in a point orbit matrix.
1) [ 1, 5, 3, 3, 2, 2, 2, 2, 2, 2, 1] 7) [ 0, 5, 3, 3, 3, 2, 2, 2, 2, 2, 1 ]
2) [ 1, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1 ] 8) [ 0, 4, 4, 4, 2, 2, 2, 2, 2, 2, 1 ]
3) [ 1, 4, 3, 3, 3, 3, 3, 2, 1, 1, 1] 9) [ 0, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1 ]
4) [ 1, 4, 3, 3, 3, 3, 2, 2, 2, 2, 0 ] 10) [ 0, 4, 3, 3, 3, 3, 3, 3, 1, 1, 1 ]
5) [ 1, 3, 3, 3, 3, 3, 3, 3, 2, 1, 0 ] 11) [ 0, 4, 3, 3, 3, 3, 3, 2, 2, 2, 0 ]
6) [ 0, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2 ] 12) [ 0, 3, 3, 3, 3, 3, 3, 3, 3, 1, 0 ]

After determining the candidates for rows of a point orbit matrix, we proceed with the construction
of point orbit matrices following the algorithm given in [5].

Using our program written for GAP, we constructed 528 pairwise non-isomorphic point orbit
matrices for the action of an automorphism of order 5 on a 2-(51, 25, 12) designD. Here, for isomorph
rejection we used all permutations of rows and columns of (partial) point orbit matrices that correspond
to the orbits of the same length, i.e., that satisfy the conditions from Proposition 2.3. We checked
whether the constructed point orbit matrices are mutually non-isomorphic by using the GAP function
TransformingPermutations. This is summarized in the following theorem.

Theorem 3.2. Up to isomorphism, there are exactly 528 point orbit matrices for an action of an
automorphism of order 5 on a 2-(51, 25, 12) design.
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We assume that the group G =
〈
ρ, α | ρ5 = α2 = 1, αρα = ρ−1

〉
� Frob10 acts on a Hadamard 2-

(51, 25, 12) design in such a way that the involution α fixes the ⟨ρ⟩-orbits of points and blocks setwise.
To proceed with the construction of the designs admitting such action of the group G ≤ Aut(D),
while indexing the obtained orbit matrices, we may assume that its subgroup ⟨α⟩ < G stabilizes
the representatives of all ⟨ρ⟩-orbits of points and blocks. Since we assumed that α stabilizes the
representatives of all orbits for the action of an automorphism ρ of order 5 on a 2-(51, 25, 12) design
(i.e., all ⟨ρ⟩-orbits are also G-orbits), involution α acts on the set of indices of a ⟨ρ⟩-orbit of non-fixed
points (and non-fixed blocks) in one of the following ways:

α =

{
(0)(1, 4)(2, 3)
(0)(1)(2)(3)(4).

(3.1)

If α = (0)(1, 4)(2, 3) is the action of α on the index set of a point ⟨ρ⟩-orbit {P0, P1, . . . , P4} and a
block ⟨ρ⟩-orbit {B0, B1, . . . , B4}, then the possibilities for the first rows of the corresponding part of
an incidence matrix of D are as given in Table 2. The other four can be obtained by their cyclic
permutations.

Table 2. Indexing of ti j for the group G acting onD, α = (0)(14)(23).

ti j Possibilities for indexing the first rows ti j Possibilities for indexing the first rows

0 [0,0,0,0,0] 3 [1,1,0,0,1], [1,0,1,1,0]
1 [1,0,0,0,0] 4 [0,1,1,1,1]
2 [0,1,0,0,1], [0,0,1,1,0] 5 [1,1,1,1,1]

A group acts transitively on each of its orbit, and it is known that a transitive action of a group on
a set is permutation isomorphic to the action of the group on the cosets of the stabilizer of an element
of the set; for example, see [13]. Let ρ and α be elements of orders 5 and 2, respectively, in D10. The
group D10 has two conjugacy classes of nontrivial subgroups, which are of orders 2 and 5. Thus, there
are three ways in which D10 acts as a nontrivial permutation group: the regular action on 10 points, the
standard action on 5 points, and an action on 2 points where elements of order 2 act nontrivially and
the cyclic subgroup of order 5 is in the kernel. Hence, the following proposition holds.

Proposition 3.3. Let D be a 2-(51, 25, 12) design having a non-abelian automorphism group G =〈
ρ, α | ρ5 = α2 = 1, αρα = ρ−1

〉
of order 10. If G acts on the set of points of D with the orbit lengths

distribution (1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5) (i.e., all ⟨ρ⟩-orbits are also G-orbits), then α fixes exactly 11
points.

The next step in the construction of designs is the indexing of the obtained orbit matrices, i.e., the
construction of 2-(51, 25, 12) designs for the described action of G. The indexing of the point orbit
matrices constructed for the action of an automorphism of order 5 was carried out quickly, by using
Table 2 and checking if any pair of points is incident λ = 12 common blocks. Finally, after eliminating
isomorphic copies in the set of 480 constructed designs (using GAP function IsIsomorphicBlockDesign),
we complete the classification and summarize the above results in the following theorem.

Theorem 3.4. Up to isomorphism, there are exactly 17 Hadamard 2-(51, 25, 12) designs having an
automorphism group G =

〈
ρ, α | ρ5 = α2 = 1, αρα = ρ−1

〉
, where an involution fixes setwise all the
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⟨ρ⟩-orbits of the sets of points and blocks. The G-orbit lengths distribution on the set of points (and
blocks) of those designs is (1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5). Among the 17 constructed designs D1, . . . ,D17

there are 9 self-dual and 4 pairs of dual designs. Their full automorphism groups are given in Table 3.
Up to equivalence, these 17 designs yield 9 Hadamard matrices of order 52.

Table 3. The full automorphism groups of designsD1, . . . ,D17.
|Aut(D)| Description Design

600 E25 : (Z4 × S 3) D1

40 Z2 × (Z5 : Z4) D2,D8,D9,D10,D16,D17

100 E25 : Z4 D3,D4,D11,D12

20 Z5 : Z4 D5,D7,D14,D15

10 D10 D6,D13

4. Hadamard 2-(59, 29, 14) designs with automorphism group Frob14 and Frob21

Similarly as in Section 3, we examine actions of a non-abelian group Frob14 � Z7 : Z2 and Frob21 �

Z7 : Z3 on a 2-(59, 29, 14) design. First, we take a look at the action of an automorphism of order 7 on
a 2-(59, 29, 14) design.

Proposition 4.1. If an automorphism σ of order 7 acts on a 2-(59, 29, 14) design, then it fixes exactly
three points.

Proof. If σ is an automorphism of order 7 acting on a 2-(51, 25, 12) design D′, then the number of
points fixed by σ is Fσ ∈ {3, 10, 17, 24}, since σ acts on the set of points (and blocks) of D′ in orbits
of length 1 or 7. By Proposition 2.1, it holds that Fσ ≤ 29. However, it is easy to check that for
Fσ ∈ {10, 17, 24}, there are no candidates for a row in a point orbit matrix corresponding to an ⟨σ⟩-
orbit of non-fixed points that satisfies the properties (2.1), (2.2), and (2.4), for s = s′. Therefore, it
holds that Fσ = 3. □

Hence, by Proposition 4.1, an automorphism σ of order 7 acts on a 2-(59, 29, 14) design with the
orbit lengths distribution (ω1, . . . , ω11) = (1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7). It is easy to see that there is
only one candidate for the rows in a point orbit matrix that represent the points fixed by σ, which is
[1, 0, 0, 7, 7, 7, 7, 0, 0, 0, 0] (up to permutations of columns that correspond to the block orbits of the
same length). Also, all possible candidates for the rows in a point orbit matrix that correspond to ⟨σ⟩-
orbits of non-fixed points (up to permutations of columns that correspond to the block orbits of the
same length) are listed in Table 4. They satisfy the properties (2.1), (2.2), and (2.4), for s = s′.

Table 4. Candidates for rows in a point orbit matrix.
1) [ 1, 1, 1, 5, 4, 4, 3, 3, 3, 2, 2] 9) [ 1, 0, 0, 5, 5, 4, 3, 3, 3, 3, 2 ]
2) [ 1, 1, 1, 4, 4, 4, 4, 4, 2, 2, 2 ] 10) [ 1, 0, 0, 5, 4, 4, 4, 4, 3, 2, 2 ]
3) [ 1, 1, 1, 4, 4, 4, 4, 3, 3, 3, 1] 11) [ 1, 0, 0, 4, 4, 4, 4, 4, 4, 3, 1 ]
4) [ 1, 1, 0, 6, 3, 3, 3, 3, 3, 3, 3 ] 12) [ 0, 0, 0, 6, 4, 4, 3, 3, 3, 3, 3 ]
5) [ 1, 1, 0, 5, 5, 3, 3, 3, 3, 3, 2 ] 13) [ 0, 0, 0, 5, 5, 4, 4, 3, 3, 3, 2 ]
6) [ 1, 1, 0, 5, 4, 4, 4, 3, 3, 2, 2 ] 14) [ 0, 0, 0, 5, 4, 4, 4, 4, 4, 2, 2 ]
7) [ 1, 1, 0, 4, 4, 4, 4, 4, 3, 3, 1] 15) [ 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 1]
8) [ 1, 0, 0, 6, 4, 3, 3, 3, 3, 3, 3 ]
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By using our program written for GAP, we constructed 18 pairwise non-isomorphic point orbit
matrices for the action of an automorphism of order 7 on a 2-(59, 29, 14) designD′. In this case as well,
for isomorph rejection we used all permutations of rows and columns of (partial) point orbit matrices
that correspond to the orbits of the same length, i.e., that satisfy the conditions from Proposition 2.3.
We summarize this in the following theorem.

Theorem 4.2. Up to isomorphism, there are exactly 18 point orbit matrices for an action of an
automorphism of order 7 on a 2-(59, 29, 14) design.

Let us assume that a non-abelian group H =
〈
σ, α | σ7 = α2 = 1, ασα = σ−1

〉
� Frob14 acts on

a 2-(59, 29, 14) design in such a way that an involution fixes ⟨σ⟩-orbits of points and blocks setwise.
In other words, all ⟨σ⟩-orbits are also H-orbits. As in Section 3, here we assume that the subgroup
⟨α⟩ � Z2 of H ≤ Aut(D′) stabilizes the representatives of all ⟨σ⟩-orbits of points and blocks. The
following proposition can be proven in a similar way as Proposition 3.3.

Proposition 4.3. Let D′ be a 2-(59, 29, 14) design having a non-abelian automorphism group H =〈
σ, α | σ7 = α2 = 1, ασα = σ−1

〉
of order 14. If H acts on the set of points (and blocks) with the orbit

lengths distribution (1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7), then α fixes exactly 11 points.

Therefore, α acts on the set of indices of all ⟨σ⟩-orbit of non-fixed points (and non-fixed blocks) as

α = (0)(1, 6)(2, 5)(3, 4). (4.1)

Further, the corresponding element ti j in a point orbit matrix for the described action of H on D′

can be indexed in a few ways, as given in Table 5. Only the first rows are listed, since the other six can
be obtained by their cyclic permutations.

Table 5. Indexing of ti j for the group H acting onD′.

ti j Possibilities for indexing the first rows ti j Possibilities for indexing the first rows

1 [1,0,0,0,0,0,0] 4 [0,1,1,0,0,1,1], [0,1,0,1,1,0,1], [0,0,1,1,1,1,0]
2 [0,1,0,0,0,0,1], [0,0,1,0,0,1,0], [0,0,0,1,1,0,0] 5 [1,1,1,0,0,1,1], [1,1,0,1,1,0,1], [1,0,1,1,1,1,0]
3 [1,1,0,0,0,0,1], [1,0,1,0,0,1,0], [1,0,0,1,1,0,0] 6 [0,1,1,1,1,1,1]

The last step is indexing of the obtained orbit matrices, i.e., the construction of 2-(59, 29, 14) designs
for the assumed action of H. The indexing of the point orbit matrices constructed for the action of an
automorphism of order 7 was carried out very quickly, by using Table 5 and by checking if any pair of
points is incident with λ = 14 common blocks. In this way, we construct all Hadamard 2-(59, 29, 14)
designs admitting the described action of the automorphism group H. After eliminating isomorphic
copies in the set of 96 constructed designs, we complete the classification and summarize the above
results in the following theorem.

Theorem 4.4. Let D′ be a 2-(59, 29, 14) design having a non-abelian automorphism group H =〈
σ, α | σ7 = α2 = 1, ασα = σ−1

〉
of order 14. If the involution α fixes setwise all the ⟨σ⟩-orbits of

points and blocks, then H acts on D′ with the orbit lengths distribution (1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7).
Up to isomorphism, there are exactly 32 Hadamard 2-(59, 29, 14) designs admitting that action of
H. Among them there are 16 pairs of dual designs and their full automorphism group is D28. Up to
equivalence, these 32 designs yield 8 Hadamard matrices of order 60.
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Next, we analyze the action of a non-abelian group of order 21, i.e., H′ � Frob21 � Z7 : Z3 on
a Hadamard 2-(59, 29, 14) design D′, assuming that a subgroup of order 3 fixes setwise all the Z7-
orbits of points and blocks. The 18 pairwise non-isomorphic point orbit matrices for the action of an
automorphism of order 7 on a 2-(59, 29, 14) design are used here to prove the following proposition.

Theorem 4.5. There does not exist a Hadamard 2-(59, 29, 14) design D′ having a non-abelian
automorphism group H′ =

〈
σ, β | σ7 = β3 = 1, βσβ = σ−1

〉
� Frob21 such that the automorphism

β fixes setwise all the ⟨σ⟩-orbits of points and blocks.

Proof. By Proposition 4.1, the automorphism σ acts on D′ with the point orbit lengths distribution
(1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7). Since we may assume that β stabilizes the representatives of all ⟨σ⟩-orbits
(i.e. ⟨σ⟩-orbits are also H′-orbits), the action of β on the set of indices of a ⟨σ⟩-orbit of non-fixed points
(and non-fixed blocks) is as follows:

β = (0)(1, 2, 4)(3, 6, 5). (4.2)

Since β = (0)(1, 2, 4)(3, 6, 5) is a representation of the action of β on the set of indices of a point
⟨σ⟩-orbit {P0, P1, . . . , P6} and a block ⟨σ⟩-orbit {B0, B1, . . . , B6}, then it is clear that the corresponding
element ti j in a point orbit matrix for the assumed action of H′ is

ti j ∈ {0, 1, 3, 4, 6, 7}. (4.3)

The automorphism β acts on every ⟨σ⟩-orbit of non-fixed points OP (and non-fixed blocks) as the
permutation β = (0)(1, 2, 4)(3, 6, 5). Hence, if the i-th row in a point orbit matrix for the assumed action
of H′ on D′ is the one that corresponds to the orbit OP, then the elements ti j, ∀ j ∈ {4, . . . , 11} must be
from the set as denoted in (4.3). However, each of the 18 constructed pairwise non-isomorphic point
orbit matrices contains an element equal to 2 or 5 in each row corresponding to an orbit with non-fixed
points. This gives a contradiction with (4.3). Therefore, point orbit matrices for the assumed action of
the group H′ onD′ do not exist. □

5. Self-dual codes constructed from obtained Hadamard matrices

Codes obtained from Hadamard designs and Hadamard matrices gain a lot of attention among
people working in coding theory. In this section, we use Hadamard 2-(59, 29, 14) designs and
Hadamard matrices of order 60 obtained in this paper to construct linear codes. Recently, in [1, 2, 18],
the authors were interested in self-dual ternary codes of length 60 obtained form Hadamard matrices
and designs. In the aforementioned papers, the authors have studied extremal self-dual codes, while
the codes that we constructed are not extremal. Further, in [27], the authors classify all optimal singly
even self-dual codes with an automorphism of order 5 with 12 cycles, and in [17] the authors were
interested in binary self-dual codes of length 60.

It is well-known that designs with high degree of symmetry could produce codes with low
dimension. If p is a prime, p-rank of the incidence matrix of a 2-(v, k, λ) design can be smaller than v−1
only if p divides the order of a design, i.e., if p divides k−λ in the case of a symmetric design (see [16]).
For a symmetric 2-(59, 29, 14) design, the primes that could be of interest are 3 and 5, whereas for 2-
(51, 25, 12), we obtain trivial results whenever p , 13. Ternary codes and codes over the finite field of
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order 5 spanned by incidence matrices of 2-(59, 29, 14) designs give raise to 8 non-equivalent ternary
linear codes having the length 59 and dimension 30, i.e., linear codes with parameters [59, 30]. In the
cases of ternary codes, the best known minimal weight for [59, 30]3 codes is 17, while in the case of
the codes over the finite field of order 5, i.e., [59, 30]5, is 18.

The minimum weights of the constructed linear codes are presented in Table 6.

Table 6. Linear codes from 2-(59,29,14) designs.

GF(q) C(Di) Minimum weight
q = 3 i = 1, 2, 3, 5 8
q = 3 i = 6, 8 11
q = 3 i = 4, 7 12
q = 5 i = 1, 2, 3, 4, 5, 8 12
q = 5 i = 6, 7 13

Moreover, we construct ternary self-dual codes and self-dual codes over the finite field of order 5
spanned by the Hadamard matrices of order 60 obtained in this paper. Self-dual codes constructed
from Hadamard matrices of order 60 with an automorphism group of order 29 were studied in [1].

Ternary codes spanned by Hadamard matrices of order 60 give raise to 8 nonequivalent ternary
self-dual codes having the length 60 and dimension 30, i.e., linear codes with parameters [60, 30], and
to 8 nonequivalent [60, 30] linear codes over finite field of order 5. In the cases of ternary codes, the
best known minimal weight for [60, 30]3 codes is 18, while in the case of the codes over the finite field
of order 5, i.e., [60, 30]5, is 19.

The minimum weights of constructed self-dual codes are presented in Table 7.

Table 7. Self-dual codes from Hadamard matrices of order 60.

GF(q) C(Hi) Minimum weight
q = 3 i = 4, 6, 7, 8 9
q = 3 i = 1, 2, 3, 5 12
q = 5 i = 2, 3, 4, 5, 7, 8 12
q = 5 i = 1, 6 14
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