Hermitian linear complementary dual (LCD) codes are a class of linear codes that intersect with their Hermitian dual trivially. Each Hermitian LCD code can give an entanglement-assisted quantum error-correcting code (EAQECC) with maximal entanglement. Methods of constructing Hermitian LCD codes from known codes were developed, and seven new Hermitian LCD codes with parameters $ [119,4,88]_{4} $, $ [123,4,91]_{4} $, $ [124,4,92]_{4} $, $ [136,4,101]_{4} $, $ [140,4,104]_{4} $, $ [188,4,140]_{4} $ and $ [212,4,158]_{4} $ were constructed. Seven families of Hermitian LCD codes and their related EAQECCs were derived from these codes. These new EAQECCs have better parameters than those known in the literature.
Citation: Yuezhen Ren, Ruihu Li, Guanmin Guo. New entanglement-assisted quantum codes constructed from Hermitian LCD codes[J]. AIMS Mathematics, 2023, 8(12): 30875-30881. doi: 10.3934/math.20231578
Hermitian linear complementary dual (LCD) codes are a class of linear codes that intersect with their Hermitian dual trivially. Each Hermitian LCD code can give an entanglement-assisted quantum error-correcting code (EAQECC) with maximal entanglement. Methods of constructing Hermitian LCD codes from known codes were developed, and seven new Hermitian LCD codes with parameters $ [119,4,88]_{4} $, $ [123,4,91]_{4} $, $ [124,4,92]_{4} $, $ [136,4,101]_{4} $, $ [140,4,104]_{4} $, $ [188,4,140]_{4} $ and $ [212,4,158]_{4} $ were constructed. Seven families of Hermitian LCD codes and their related EAQECCs were derived from these codes. These new EAQECCs have better parameters than those known in the literature.
[1] | J. L. Massey, Linear codes with complementary duals, Discrete Math., 106-107 (1992), 337–342. https://doi.org/10.1016/0012-365x(92)90563-u doi: 10.1016/0012-365x(92)90563-u |
[2] | C. Carlet, S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131–150. https://doi.org/10.3934/amc.2016.10.131 doi: 10.3934/amc.2016.10.131 |
[3] | L. Lu, R. Li, L. Guo, Q. Fu, Maximal entanglement entanglement-assisted quantum codes constructed from linear codes, Quantum Inf. Process., 14 (2015), 165–182. https://doi.org/10.1007/s11128-014-0830-y doi: 10.1007/s11128-014-0830-y |
[4] | C. Y. Lai, T. A. Brun, M. M. Wilde, Dualities and identities for entanglement-assisted quantum codes, Quantum Inf. Process., 13 (2014), 957–990. https://doi.org/10.1007/s11128-013-0704-8 doi: 10.1007/s11128-013-0704-8 |
[5] | C. Carlet, S. Mesnager, C. Tang, Y. Qi, R. Pellikaan, Linear codes over $F_q$ are equivalent to LCD codes for $q>3$, IEEE Trans. Inf. Theory, 64 (2018), 3010–3017. https://doi.org/10.1109/tit.2018.2789347 doi: 10.1109/tit.2018.2789347 |
[6] | M. Araya, M. Harada, K. Saito, Quaternary Hermitian linear complementary dual codes, IEEE Trans. Inf. Theory, 66 (2019), 2751–2759. https://doi.org/10.1109/tit.2019.2949040 doi: 10.1109/tit.2019.2949040 |
[7] | M. Araya, M. Harada, On the classification of quaternary optimal Hermitian LCD codes, Cryptogr. Commun., 14 (2022), 833–847. https://doi.org/10.1007/s12095-021-00552-5 doi: 10.1007/s12095-021-00552-5 |
[8] | M. Harada, Construction of binary LCD codes, ternary LCD codes and quaternary Hermitian LCD codes, Des. Codes Cryptogr., 89 (2021), 2295–2312. https://doi.org/10.1007/s10623-021-00916-1 doi: 10.1007/s10623-021-00916-1 |
[9] | L. Lu, X. Zhan, S. Yang, H. Cao, Optimal quaternary Hermitian LCD codes, arXiv, 2020. https://doi.org/10.48550/arXiv.2010.10166 doi: 10.48550/arXiv.2010.10166 |
[10] | X. Zhan, R. Li, L. Lu, H. Li, Quatemary Hermitian linear complementary dual codes with small distance, 2020 International Conference on Information Science and Education (ICISE-IE), Sanya, China, 2020, 38–41. https://doi.org/10.1109/icise51755.2020.00016 |
[11] | T. Brun, I. Devetak, M. Hsieh, Correcting quantum errors with entanglement, Science, 314 (2006), 436–439. https://doi.org/10.1126/science.1131563 doi: 10.1126/science.1131563 |
[12] | W. Bosma, J. Cannon, C. Playoust, The Magma algebra system Ⅰ: the user language, J. Symb. Comput., 24 (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125 doi: 10.1006/jsco.1996.0125 |
[13] | W. C. Huffman, V. Pless, Fundamentals of error-correcting codes, New York: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511807077 |
[14] | I. Bouyukliev, M. Grassl, Z. Varbanov, New bounds for $n_{4}(k, d)$ and classification of some optimal codes over $GF(4)$, Discrete Math., 281 (2004), 43–66. https://doi.org/10.1016/j.disc.2003.11.003 doi: 10.1016/j.disc.2003.11.003 |
[15] | P. P. Greenough, R. Hill, Optimal linear codes over $GF(4)$, Discrete Math., 125 (1994), 187–199. https://doi.org/10.1016/0012-365x(94)90160-0 doi: 10.1016/0012-365x(94)90160-0 |
[16] | M. C. Bhandari, M. S. Garg, Optimum codes of dimension 3 and 4 over $GF(4)$, IEEE Trans. Inf. Theory, 38 (1992), 1564–1567. https://doi.org/10.1109/18.149507 doi: 10.1109/18.149507 |
[17] | M. Grassl, Code tables: bounds on the parameters of various types of codes, 2023. Available from: http://www.codetables.de. |