Research article Special Issues

New entanglement-assisted quantum codes constructed from Hermitian LCD codes

  • Received: 24 August 2023 Revised: 02 November 2023 Accepted: 10 November 2023 Published: 16 November 2023
  • MSC : 94B05, 11T71

  • Hermitian linear complementary dual (LCD) codes are a class of linear codes that intersect with their Hermitian dual trivially. Each Hermitian LCD code can give an entanglement-assisted quantum error-correcting code (EAQECC) with maximal entanglement. Methods of constructing Hermitian LCD codes from known codes were developed, and seven new Hermitian LCD codes with parameters $ [119,4,88]_{4} $, $ [123,4,91]_{4} $, $ [124,4,92]_{4} $, $ [136,4,101]_{4} $, $ [140,4,104]_{4} $, $ [188,4,140]_{4} $ and $ [212,4,158]_{4} $ were constructed. Seven families of Hermitian LCD codes and their related EAQECCs were derived from these codes. These new EAQECCs have better parameters than those known in the literature.

    Citation: Yuezhen Ren, Ruihu Li, Guanmin Guo. New entanglement-assisted quantum codes constructed from Hermitian LCD codes[J]. AIMS Mathematics, 2023, 8(12): 30875-30881. doi: 10.3934/math.20231578

    Related Papers:

  • Hermitian linear complementary dual (LCD) codes are a class of linear codes that intersect with their Hermitian dual trivially. Each Hermitian LCD code can give an entanglement-assisted quantum error-correcting code (EAQECC) with maximal entanglement. Methods of constructing Hermitian LCD codes from known codes were developed, and seven new Hermitian LCD codes with parameters $ [119,4,88]_{4} $, $ [123,4,91]_{4} $, $ [124,4,92]_{4} $, $ [136,4,101]_{4} $, $ [140,4,104]_{4} $, $ [188,4,140]_{4} $ and $ [212,4,158]_{4} $ were constructed. Seven families of Hermitian LCD codes and their related EAQECCs were derived from these codes. These new EAQECCs have better parameters than those known in the literature.



    加载中


    [1] J. L. Massey, Linear codes with complementary duals, Discrete Math., 106-107 (1992), 337–342. https://doi.org/10.1016/0012-365x(92)90563-u doi: 10.1016/0012-365x(92)90563-u
    [2] C. Carlet, S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131–150. https://doi.org/10.3934/amc.2016.10.131 doi: 10.3934/amc.2016.10.131
    [3] L. Lu, R. Li, L. Guo, Q. Fu, Maximal entanglement entanglement-assisted quantum codes constructed from linear codes, Quantum Inf. Process., 14 (2015), 165–182. https://doi.org/10.1007/s11128-014-0830-y doi: 10.1007/s11128-014-0830-y
    [4] C. Y. Lai, T. A. Brun, M. M. Wilde, Dualities and identities for entanglement-assisted quantum codes, Quantum Inf. Process., 13 (2014), 957–990. https://doi.org/10.1007/s11128-013-0704-8 doi: 10.1007/s11128-013-0704-8
    [5] C. Carlet, S. Mesnager, C. Tang, Y. Qi, R. Pellikaan, Linear codes over $F_q$ are equivalent to LCD codes for $q>3$, IEEE Trans. Inf. Theory, 64 (2018), 3010–3017. https://doi.org/10.1109/tit.2018.2789347 doi: 10.1109/tit.2018.2789347
    [6] M. Araya, M. Harada, K. Saito, Quaternary Hermitian linear complementary dual codes, IEEE Trans. Inf. Theory, 66 (2019), 2751–2759. https://doi.org/10.1109/tit.2019.2949040 doi: 10.1109/tit.2019.2949040
    [7] M. Araya, M. Harada, On the classification of quaternary optimal Hermitian LCD codes, Cryptogr. Commun., 14 (2022), 833–847. https://doi.org/10.1007/s12095-021-00552-5 doi: 10.1007/s12095-021-00552-5
    [8] M. Harada, Construction of binary LCD codes, ternary LCD codes and quaternary Hermitian LCD codes, Des. Codes Cryptogr., 89 (2021), 2295–2312. https://doi.org/10.1007/s10623-021-00916-1 doi: 10.1007/s10623-021-00916-1
    [9] L. Lu, X. Zhan, S. Yang, H. Cao, Optimal quaternary Hermitian LCD codes, arXiv, 2020. https://doi.org/10.48550/arXiv.2010.10166 doi: 10.48550/arXiv.2010.10166
    [10] X. Zhan, R. Li, L. Lu, H. Li, Quatemary Hermitian linear complementary dual codes with small distance, 2020 International Conference on Information Science and Education (ICISE-IE), Sanya, China, 2020, 38–41. https://doi.org/10.1109/icise51755.2020.00016
    [11] T. Brun, I. Devetak, M. Hsieh, Correcting quantum errors with entanglement, Science, 314 (2006), 436–439. https://doi.org/10.1126/science.1131563 doi: 10.1126/science.1131563
    [12] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system Ⅰ: the user language, J. Symb. Comput., 24 (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125 doi: 10.1006/jsco.1996.0125
    [13] W. C. Huffman, V. Pless, Fundamentals of error-correcting codes, New York: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511807077
    [14] I. Bouyukliev, M. Grassl, Z. Varbanov, New bounds for $n_{4}(k, d)$ and classification of some optimal codes over $GF(4)$, Discrete Math., 281 (2004), 43–66. https://doi.org/10.1016/j.disc.2003.11.003 doi: 10.1016/j.disc.2003.11.003
    [15] P. P. Greenough, R. Hill, Optimal linear codes over $GF(4)$, Discrete Math., 125 (1994), 187–199. https://doi.org/10.1016/0012-365x(94)90160-0 doi: 10.1016/0012-365x(94)90160-0
    [16] M. C. Bhandari, M. S. Garg, Optimum codes of dimension 3 and 4 over $GF(4)$, IEEE Trans. Inf. Theory, 38 (1992), 1564–1567. https://doi.org/10.1109/18.149507 doi: 10.1109/18.149507
    [17] M. Grassl, Code tables: bounds on the parameters of various types of codes, 2023. Available from: http://www.codetables.de.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(689) PDF downloads(67) Cited by(1)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog