In this article, we studied the asymptotic behavior of weak solutions to the three-dimensional tropical climate model with one single diffusion $ \mu\Lambda ^{2\alpha}u $. We established that when $ u_{0}\in L^{1}(\mathbb{R}^{3})\cap L^{2}(\mathbb{R}^{3}) $, $ (w_0, \theta_0)\in (L^{2}(\mathbb{R}^{3}))^2 $ and $ w\in L^\infty(0, \infty; W^{1-\alpha, \infty}(\mathbb{R}^3)) $ with $ \alpha\in(0, 1] $, the energy $ \Vert u(t)\Vert_{L^2(\mathbb{R}^3)} $ vanishes and $ \Vert w(t)\Vert_{L^2(\mathbb{R}^3)}+\Vert \theta(t)\Vert_{L^2(\mathbb{R}^3)} $ converges to a constant as time tends to infinity.
Citation: Ying Zeng, Wenjing Yang. Decay of unique global solution for 3D tropical climate model with partial dissipation[J]. AIMS Mathematics, 2023, 8(12): 30882-30894. doi: 10.3934/math.20231579
In this article, we studied the asymptotic behavior of weak solutions to the three-dimensional tropical climate model with one single diffusion $ \mu\Lambda ^{2\alpha}u $. We established that when $ u_{0}\in L^{1}(\mathbb{R}^{3})\cap L^{2}(\mathbb{R}^{3}) $, $ (w_0, \theta_0)\in (L^{2}(\mathbb{R}^{3}))^2 $ and $ w\in L^\infty(0, \infty; W^{1-\alpha, \infty}(\mathbb{R}^3)) $ with $ \alpha\in(0, 1] $, the energy $ \Vert u(t)\Vert_{L^2(\mathbb{R}^3)} $ vanishes and $ \Vert w(t)\Vert_{L^2(\mathbb{R}^3)}+\Vert \theta(t)\Vert_{L^2(\mathbb{R}^3)} $ converges to a constant as time tends to infinity.
[1] | C. J. Amick, J. L. Bona, M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differ. Equ., 81 (1989), 1–49. https://doi.org/10.1016/0022-0396(89)90176-9 doi: 10.1016/0022-0396(89)90176-9 |
[2] | R. Agapito, M. Schonbek, Non-uniform decay of MHD equations with and without magnetic diffusion, Commun. Partial Differ. Equ., 32 (2007), 1791–1812. https://doi.org/10.1080/03605300701318658 doi: 10.1080/03605300701318658 |
[3] | L. Bisconti, A regularity criterion for a 2D tropical climate model with fractional dissipation, Monatsh. Math., 194 (2021), 719–736. |
[4] | C. S. Cao, E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. Math., 166 (2007), 245–267. https://doi.org/10.4007/annals.2007.166.245 doi: 10.4007/annals.2007.166.245 |
[5] | C. S. Cao, E. S. Titi, Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion, Commun. Math. Phys., 310 (2012), 537–568. https://doi.org/10.1007/s00220-011-1409-4 doi: 10.1007/s00220-011-1409-4 |
[6] | C. S. Cao, J. K. Li, E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Rational Mech. Anal., 214 (2014), 35–76. https://doi.org/10.1007/s00205-014-0752-y doi: 10.1007/s00205-014-0752-y |
[7] | C. S. Cao, J. K. Li, E. S. Titi, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity, J. Differ. Equ., 257 (2014), 4108–4132. http://dx.doi.org/10.1016/j.jde.2014.08.003 doi: 10.1016/j.jde.2014.08.003 |
[8] | B. Q. Dong, W. J. Wang, J. H. Wu, H. Zhang, Global regularity results for the climate model with fractional dissipation, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 211–229. https://doi.org/10.3934/dcdsb.2018102 doi: 10.3934/dcdsb.2018102 |
[9] | B. Q. Dong, J. H. Wu, Z. Ye, Global regularity for a 2D tropical climate model with fractional dissipation, J. Nonlinear Sci., 29 (2019), 511–550. https://doi.org/10.1007/s00332-018-9495-5 doi: 10.1007/s00332-018-9495-5 |
[10] | B. Q. Dong, J. H. Wu, Z. Ye, 2D tropical climate model with fractional dissipation and without thermal diffusion, Commun. Math. Sci., 18 (2020), 259–292. https://doi.org/10.4310/cms.2020.v18.n1.a11 doi: 10.4310/cms.2020.v18.n1.a11 |
[11] | M. Dai, H. Liu, Long time behavior of solutions to the 3D Hall-magneto-hydrodynamics system with one diffusion, J. Differ. Equ., 266 (2019), 7658–7677. https://doi.org/10.1016/j.jde.2018.12.008 doi: 10.1016/j.jde.2018.12.008 |
[12] | D. M. W. Frierson, A. J. Majda, O. M. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit, Commun. Math. Sci., 2 (2004), 591–626. https://doi.org/10.4310/cms.2004.v2.n4.a3 doi: 10.4310/cms.2004.v2.n4.a3 |
[13] | R. H. Guterres, J. R. Nunes, C. F. Perusato, On the large time decay of global solutions for the micropolar dynamics in $L^2(\mathbb{R}^n)$, Nonlinear Anal. Real World Appl., 45 (2019), 789–798. https://doi.org/10.1016/j.nonrwa.2018.08.002 doi: 10.1016/j.nonrwa.2018.08.002 |
[14] | J. G. Heywood, Epochs of regularity for weak solutions of the Navier-Stokes equations in unbounded domains, Tohoku Math. J., 40 (1988), 293–313. https://doi.org/10.2748/tmj/1178228031 doi: 10.2748/tmj/1178228031 |
[15] | H. M. Li, Y. L. Xiao, Decay rate of unique global solution for a class of 2D tropical climate model, Math. Methods Appl. Sci., 42 (2019), 2533–2543. https://doi.org/10.1002/mma.5529 doi: 10.1002/mma.5529 |
[16] | J. K. Li, E. S. Titi, Global well-posedness of strong solutions to a tropical climate model, Discrete Contin. Dyn. Syst., 36 (2016), 4495–4516. https://doi.org/10.3934/dcds.2016.36.4495 doi: 10.3934/dcds.2016.36.4495 |
[17] | V. Mazya, T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002), 230–238. https://doi.org/10.1006/jfan.2002.3955 doi: 10.1006/jfan.2002.3955 |
[18] | C. J. Niche, C. F. Perusato, Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids, Z. Angew. Math. Phys., 73 (2022), 48. https://doi.org/10.1007/s00033-022-01683-2 doi: 10.1007/s00033-022-01683-2 |
[19] | C. J. Niche, M. E. Schonbek, Decay of weak solutions to the 2D dissipative quasi-geostrophic equation, Commun. Math. Phys., 276 (2007), 93–115. https://doi.org/10.1007/s00220-007-0327-y doi: 10.1007/s00220-007-0327-y |
[20] | M. E. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 88 (1985), 209–222. https://doi.org/10.1007/bf00752111 doi: 10.1007/bf00752111 |
[21] | M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Commun. Partial Differ. Equ., 11 (1986), 733–763. https://doi.org/10.1080/03605308608820443 doi: 10.1080/03605308608820443 |
[22] | H. Y. Xie, Z. Y. Zhang, Time decay rate of solutions to the tropical climate model equations in $\mathbb{R}^n$, Appl. Anal., 100 (2021), 1487–1500. https://doi.org/10.1080/00036811.2019.1646422 doi: 10.1080/00036811.2019.1646422 |
[23] | B. Q. Yuan, Y. Zhang, Global strong solution of 3D tropical climate model with damping, Front. Math. China, 16 (2021), 889–900. https://doi.org/10.1007/s11464-021-0933-6 doi: 10.1007/s11464-021-0933-6 |
[24] | Z. Ye, Global regularity for a class of 2D tropical climate model, J. Math. Anal. Appl., 446 (2017), 307–321. https://doi.org/10.1016/j.jmaa.2016.08.053 doi: 10.1016/j.jmaa.2016.08.053 |
[25] | M. X. Zhu, Global regularity for the tropical climate model with fractional diffusion on barotropic mode, Appl. Math. Lett., 81 (2018), 99–104. https://doi.org/10.1016/j.aml.2018.02.003 doi: 10.1016/j.aml.2018.02.003 |