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1. Introduction

This paper is concerned with the following three-dimensional tropical climate model with partial
fractional dissipation:

Ou+ - Vu+uAu+V-wew)+Vp=0, xeR>? t>0,
ow+w-Viw+V-(wu)+Ve=0,

8,0+ u-V)I+V -w=0, (1.1)
V-u=0,

u(x, 0) = up(x), wix,0) =wo(x), 6(x,0) = 6y(x),

where u = u(x,t), w = w(x,t), p = p(x,t) and § = 6(x,t) denote the barotropic mode of the
velocity field, the first baroclinic mode of the velocity field, the scalar pressure and scalar temperature,
respectively. The real parameters ¢ and o are nonnegative constants and A := (—A)z. The fractional
operator A” is defined via the Fourier transform as K’? & =1 I’]T(f).

System (1.1) is related to the following classical tropical climate model with full fractional
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dissipation:
ou+ - Vu+uA*u+V-wew)+Vp=0, xeR> t>0,
Oow+w-VIw+vAPw+V-(wu)+Vo=0,
0.0+ w-V)8+nA?0+V-w=0, (1.2)
V-u=0,
u(x,0) = up(x), w(x,0) =wy(x), 6(x,0) = 6y(x).

The non-dissipative case of system (1.2), namely, u = v = n = 0, was originally derived by Frierson,
Majda and Pauluis [12] to study the interaction between large scale flow fields and precipitation in the
tropical atmosphere. Subsequently, some mathematical problems concerning the primitive equation
have been addressed extensively (see e.g. [4-T7]).

Recently, researchers have extended the non-dissipative case of system (1.2) to the fully dissipative
or partially dissipative cases. The fully dissipative case, that is, the coefficients u, v, n > 0, has attracted
much attention, including well-posedness [9,23,24] and decay of solutions [15,22]. It is worth noting
that for the 2D case, when @ = 8 = y = 1, Li and Xiao [15] showed that, for (ug, wo, 6) € (H*(R?))*
and V - uy = 0, it holds that

211G, w, O)(®)ll 52y — 0, as t — oo,

Meanwhile, for the n-dimensional space, when the initial data (i, wo, 6p) € (L'(R") N L2(R"))3, Xie
and Zhang [22] proved that

O gy + VO gy + 10O gy < CCL+ 1),
and they claimed that by using the method of Heywood [14], it is possible to prove the existence and
uniqueness (see [ [22], Theorem 1.1 and Remark 1.1]).

Regarding the partly dissipative case of system (1.2), there are also many results, and for the well-
posedness results, we can refer to [3, 8, 10, 16,25]. In particular, in [25], the author considered strong
solutions for the 3D case, when u > 0, v = n =0, i.e., system (1.1), Zhu obtained the global regularity
when (u, wo, 6p) € (H*(R?))* with @ > 2. While, references [3, 8, 10, 16] are concerned with the 2D
case. However, with respect to the decay of solution to the partly dissipative case, to the best of our
knowledge, there are no corresponding results, which is our motivation in this paper.

For more details of decay for other models, we could refer to the papers [1, 2, 11, 13, 18-21]
and the references therein. Let us mention that Agapito and Schonbek [2] showed that for the
MHD (magnetohydrodynamics) equation, the energy |[u(?)||;2r3) vanishes and ||B(?)||;2z3) converges
to a constant as time tends to infinity when the initial data satisfies (19, By) € (L'(R*) n L2(R?)) x
(LX(R%) N L=(RY)).

Inspired by the works [2, 15,22], in this paper we consider the decay of solutions to system (1.1).
We mainly apply the Fourier splitting method to establish the decay of the high frequency part.

2. Preliminaries

2.1. Notation

We write || - ||, = Il - ll»3) for simplification and (-, -) stands for the L*-inner product. If u € L7(R?),
we define its norm to be
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(fU |u|” dx)l/p (1< p <o),
||M||U(R3) =
Dlal<k €SS SUPy u|  (p = o0).

If u € W*P(R?), we define its norm to be

1/p
— (Z|a|sk fU |D“ul” dX) (1 <p< o),
llutllwer sy == .
2laj<k €8S SUpy [ D7y (p = o).

If p = 2, we usually write
H'R?) = W®RY) (k=0,1,...).

The Fourier transform of a function f is denoted by

A

f="=02n: f e f(x)dx.
Various constants shall be denoted by C throughout the paper.

2.2. Generalized energy inequalities

Definition 2.1. (Weak solution) Let T > 0. A function
u € L0, 00; LA(R?)) N L*(0, 00y H*(R?)), w € L™(0, 00; LA(R?)), 6 € L™(0, c0; LA(R?))

is called a weak solution to system (3.1) if (u, w, 6) satisfies
fOTng(”'af¢+(”®“) Ve + uANC¢ -+ (ww) : Vé + p(V - $))dxdt = 0,
fOT fR3(W'3t¢+ wew): Vo +weu) : Vo +0(V - ¢)dxdr = 0,
fOTfR3(9'0z¢+(0®u) : Vo +w - Vo)dxdt = 0,

T
f f (u - Vo)dxdt = 0, 2.1)
0 R3

u(x, HY(x)dx = f up(X)(x)dx,

R3 R

lim f w(x, HY(x)dx = f wo(xX)W(x)dx,
=0 Jp3 R3

lim
t—0

lim f O(x, i (x)dx = f Oy (X)W (x)dx,
t—0 R3 R3

or any test function ¢ € C(R? x (0, T)) and € CX(R?).
0 0

First, we give the following fundamental apriori L2-estimates.
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Lemma 2.1. Let (ug, wo, 6p) € (L*(R*))%, then for any ¢ > 0, the solution (u,w,#) of system (1.1)
satisfies

(e, w, O)OII; + 2[ HIA“u(©)l3dT = (o, wo, 60)l- (2.2)
0

Proof. Multiplying (1.1);, (1.1); and (1.1); by u, w and 6, respectively and summing them up, we get
after integrating by parts that

d a
EE(IIMIIE + Wil + 116115) + pll Aull3

w

(u-Vu-udx — (u-V)w - wdx — f (u-V)8-0dx — f Vp - udx
R3 R

R3
(w-V)u~wdx—fV-(w®w)-udx—fV9 wdx — fV~w~9dx
R3 R3 R3
=0.
Integrating with respect to z, we get (2.2). O
Split the solution into low and high frequency parts as
@I = 1215 < llea®l; + (1 = @a@ls,

where ¢(¢) is a function in Fourier space to be chosen appropriately, to emphasize the low and high
frequency of u.

Lemma 2.2. Let (1, w, 8) be a weak solution to system (1.1). Set ¢ = e ¥/, then,
!
(I3 <llpe™ " =acs)|} +2 f Ku - Vi, e 6 D) dr

, (2.3)
— 2
+2 f KV - (W ® w), e Dy,

Proof. We take the Fourier transform of (1.1);, multiply it by ¢2e 246 (=94 and integrate over R? to
yield
f [Osu + (- V)u+ uAu+ V- (w@w) + Vp]* - gPe 28 =946 = 0, (2.4)
R3

Rewrite the first and third terms as

- 2a N A
f3 O - QDZe—Z#I,fI (H)udf
R

- f L4 (apgpe e g f R R N (2.5)
R'ﬁ 2d R3

_ 20 (¢ o\ A 2 _ 200 o) A 2
=5 e R — il M,

f u A2y . o o2 1=5) dé = f Q2 e—zmazﬂ(r-s)lﬁlz dé = 'ul|¢|§|ae—u|§|2"(t—s)ﬁ||§_ (2.6)
R3 R3
Substituting (2.5) and (2.6) into (2.4), integrating over [s, t] with respect to time yields (2.3). O
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Lemma 2.3. Assume (1, w, 6) is a weak solution to system (1.1). For E(f) € C'(R;R,) with E(¢) > 0,
then

E®I(1 - @a@)l; =E I - e)as)l; + f E' @1 - g)alldr
+2 f E@)XE™ il (1 - @)p)dr — 24 f EMI1 - )& allzdr 2.7)
-2 f E(@)u-Vu, (1 — )’ 2)dr -2 f E(@)XV - (w@w), (1 — @)’iydr.

Proof. We take the Fourier transform of (1.1),, multiply it by E(£)(1 — ¢)*# and integrate over R? to
infer

Ed% fR E@IT - @i’ dé - % fR 3 E'(0)|(1 - p)af’dé
- f EWE (1 ~ gz + pE(D) f (L - prarde 28)
+ Ei)(f-%, (1 — )’y + E(f)(V - (/w% w), (1 — )’y = 0.

Integrating (2.8) over [s, f] on time yields (2.7). O

2.3. Auxiliary estimates

In order to establish the estimate of high frequency parts, we need the following lemmas on the
boundedness of &(&, 7).

Lemma 2.4. Let (u, w, 6) be a weak solution to system (1.1) with the initial data uy € L'(R*) N L2(R?)
and (wo, 6p) € (L*(R?))?, then we have

€, Dl < C(1 + |72, (2.9)
Proof. Taking the Fourier transform of the (1.1); yields

i, + Wé a = H(E, 1),

where - - e
HéED=—w-Vu-V-(wew)—-Vp
=: H + H, + H;.
Thus,

!
i) = e 0(0) + f e MO H(E, Ty
0

For H,, we get

Hi| = |- Vyul = [V-wew)| < Ellluull; < Elllullllull, < Ellul? < CIE|. (2.10)
Similarly,
|Hy| = |V -(w®w)| < Clé|. 2.11)
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With respect to H3, by taking the divergence of (1.1);, one has

Ap=-V-u-Vu) =V -(V-(wew)). (2.12)
Taking the Fourier transform of (2.12) yields

PP <IV-V-@euw)l+[V- (V- (wew),
which together with (2.10) and (2.11), it follows that
p<C. (2.13)
Summing up (2.10), (2.11) and (2.13), we arrive at
|H(, 0l < Clel.

Furthermore,
!
(€, 0l < 1a(0)| + Cil f Ry
0

1

P
< C(1+ €',

< Clluolh + Cll—==(1 = e ™)
Finally, we introduce the fractional Sobolev inequality.

Lemma 2.5. [I7]Let0<k<[<1,1<p<gq<oosatisfy p(l —k) < nandé =
exists a positive constant C = C(n, p, q, k, ) such that

L _ Kk then there
P n

LA llwrany < Cll fllwtrggny.-

3. Results

Now, let us state our main result as follows.

Theorem 3.1. Let @ € (0,1] and uy € L'(R*) N L*2(R?), (wy, 6y) € (L*(R?))>. Assume that there is a
weak solution of system (1.1) satisfying

w € L¥(0, 00 L*(R%)) N L7(0, 003 W™ (RY)),

then we have
tlgg luDllz2w3) = 0, }LTO(HWU)”B(R% + 100l 2@3) = C

for some absolute constant C.

Lemma 3.1. (Low frequency decay) Let (u,w,0) be a weak solution to system (1.1). Assume
(g, o, 0p) € (LA(R?))3. Setting p(&) = e ¥t e deduce

1im [lpii(1)l> = 0.

AIMS Mathematics Volume 8, Issue 12, 30882-30894.



30888

Proof. The generalized energy inequality (2.3) implies
f
keI <llpe ™4 a(s)l; + 2 f Vi, e i dr

!
+2 f KV - v @ w), e 4 Dip|de

N

3
=: Z I.
i=1
For I, it follows that
2a
limsup I; = lim sup |[ge ¢ 95(s)||? = 0. (3.1
—o0 >0

Regarding the term I, by Holder, Hausdorff-Young and Sobolev inequalities, the facts that ¢ is a
rapidly decreasing function of |£| and ||u(?)||, is bounded for all the time, we infer, for @ € (0, 1],

!
L =2 f it - Vu, g2e 280y dr
Sz )
=2 f K& iy, *e D iydr
S
d 2
—— el 2 —2ulé (- ~
=2 f e, 1€~ e D11y dr
S
! 2
— l-a, 2 —2ulEP (- ~
scf llaiaejll s MET™ 7Nl o _lle D121 b d (3.2)
bt
SCf”M@u”%EHAau”sz
St
<C f llull2llull s lIA®ulld7
A

t
<C f |A®ull3dT.

Similar to the estimation of I;, we get for I5 that
!
Iy =2 f KV - v & w), g iplde
!
— _ 204 ~
=2 f K&l wiw)), e D) dr
!
JE— _ 2a ) A
SCf W Il 2l le™ 5 Dt d
. (3.3)
<c [ Iwe wllléguldr

!
<C f Iwl3lE@ ldT

!
<C f 1€¢° lbdr.
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Straightforward computations show that

2112 2 -4
l€Q?5 = f e g
R3
e 2
SCf e T dr
0
5 OO 2a
:CT_zwf a‘e™ da
0

S
< Ct 2,

(3.4)

Summing up (3.2)—-(3.4), one has

! !
L+L< C(f ||A“u||§dr+f T_45"dT). (3.5)

This together with fow ||A"u||§dr being finite, it follows that

t
lim(/; + I3) < lim lim Cf (||A“u||§ + T_%)d‘l' =0, for O<a<l. (3.6)
t—00 §—00 [—00 s
Combining (3.1) and (3.6), we conclude
tim [lpit(1)l> = 0.

Lemma 3.2. (High frequency decay) Let (u,w,0) be a weak solution to system (1.1). Assume uy €
L'(R3) N LAR3), (wo, 6p) € (LAR3))? and w € L=(0, co; WI=(R3)). Setting ¢ = ¢ ¥, then,

lim (1 = @)z = 0.
Proof. To obtain the high frequency decay, we first rewrite (2.7) as

E®I(1 - @)l

=E(s)|I(1 — @)a(s)I5 + f E' (D1 - p)illdr — 2u f E@I(1 — p)&all>dr

-2 f E(@)}u - Vu, (1 — 9)*a(t))dr -2 f E@XV - (wew), (1 — p)a(r))dr

+2 f E(@ &, (1 - p)p)dr
5
=E@II(1 - @)} + ) Ki.
i=1

In what follows, we deal with the terms K; and K, by the Fourier splitting method. Denote the ball
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x(&) = {€ € R? : |€] < G(g)}, where the radius G(g) will be determined later, then we infer

K1+K2

=f E'(T)||(1—¢)ﬁ||§dT—2ﬂf E@II(1 - p)¢“all3dr

N

< f E'(7) (1 - p)al*dédr + f E'(1) f (1 - )i’ dédr
s x(&) s R3\x(e)

Y f E@ [ 10 peided f Ew [ 101 - peapdede

Xx(&)

s !
< f E@) f (1 - pifdéd + f E() f (1 = pifdédr
s x(&) s R3\x(e)
!
e f E() f (1 - e aPdédr
s R3\x(e)
s !
< f E@) f (1 - pfdéd + f [E'(7) - UE[DG™ ()] f (1 - afdedr.
s x(&) s R3\x(e)
Taking E(f) = ¢* and G(g) = (i)ﬁ, indicates that E’(f) — 2uE(t)G**(g) = 0. Thus, we have

!
K +K, < f E'(1) (1 — )aPdédr, (3.7)
s Xx(&)

which yields by Lemma 2.4 that

f (1 - p)afdé < C (L+1&' 2 dé < C (1 + &P )dé
x(€) x(€) X&)

o (3.8)
<C f (1 +7*2dr < Ce% + &),
0

In order to estimate K3 by Holder, Hausdorff-Young and Sobolev inequalities and a € (0, 1], we get
!
Ky=-2 f E(r)u -~ Vu, (1 - ¢)*i(1))d7
Sl
=-2 f E(@)u- Vu, (1 — 9)* = Da(r))dr
t
SCf E@Ku®u, €' (@" - 2p)é iyldr
t
SCf E@la@ull:[IE'(¢* = 29Il _s_lll¢1allodT (3.9)
t
SCf E@)llu @ ull o IA“ulldt
St
SCfE(T)I|u||z||u||3_62”IIA“ullsz

t
<C f E@)||A“ull3d.
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Similarly,

t
K, SCf E@IE ™ wew, (1 - ¢)£ ildr
!
_CfE(T)Illél1_“vw/€9\vvllz||€“ﬁllzdf
St
=Cf E@IIA"*w = WlL[IE* lldT
t
=Cf E@IF ™ (A=ew « W)Ll 2lldT
Sl -
=Cf E@IF (A=ew) - F Wl alldr (3.10)
!
=CfE(T)IIwAl_“WIIzIIA“ullsz

!
—CfE(T)”W”Z”Al_awlloo||Aau”2dT

!
<CfE(T)||A“u||2dT

‘ LI }
_C( f E(T)ZdT) ( f ||A“u||§dr) :

Ks = 2f E@XEal, (1 - p)p)dr < Cf E@|IAull3. (3.11)

N

K5 can be estimated as

Putting (3.7)—(3.11) into (2.7), we deduce

11 - Qa2 <%n<1 QIR +C f E((T))IIA“ 2dr

+ %( f E(T)2d7)2 ( f ||A“u||§dr) + %(gm + e,

Now, we first pass the limit t — oo,
lim i1 — @)Ul

E(s .
<lim %ll(l — @)a(s)|5 + lim cf E(( ))

+ tl)rzlo T (f (T)Zdr) (f ||A“u||2dT) + %(Sza + 85230)

< 11m e ull3 + C f IA®ul3dT + — ( f ||A“u||§dr) +C(s% + &%)

A ul[2dT

<C f IA®ull3dT + — ( f ||A“u||2a’7) +C(e% + &),
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and then pass the limit s — oo,

© 2 S—da
lim [|(1 — @)a@)|3 < lim[ f IA®ull3dT + 7 ( f ||Aau||§dr) +C(s% + gﬁ)]
>0 S—00 s
< Cle% + &)

Since £ > 0 can be chosen arbitrarily small, it implies that lim ||(1 — @)a(?)|l, = 0
—00

Combining Lemmas 3.1 and 3.2 yields
lim |[u(®)|l, = 0. (3.12)
1—00
For the limit of |[w(?)||, + ||6(?)||, set

£@) = llu@ll2 + [w@ll2 + 6@l

By Lemma 2.1 and (3.12), we know that {(¢) is nonnegative and decreasing. Therefore, there exists a
nonnegative constant C such that {(#) — C as t — oco. Since ||u(?)|l, — 0, it follows that

Iw®ll2 + 16D, = C, as t — oo.
This completes the proof of Theorem 3.1. O

4. Conclusions

For the energy decay problem of the tropical climate model, we refered to the decay of solution of
the fully dissipative case by Li, Xiao [15] and Xie, Zhang [22]. However, with respect to the decay of
solution to the partly dissipative case, to the best of our knowledge, there are no corresponding results,
which was our motivation in this paper.
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