A signed double Italian dominating function (SDIDF) on a graph $ G = (V, E) $ is a function $ f $ from $ V $ to $ \{-1, 1, 2, 3\} $, satisfying (ⅰ) $ \sum_{u\in N[v]}f(u)\ge1 $ for all $ v\in V $; (ⅱ) if $ f(v) = -1 $ for some $ v\in V $, then there exists $ A\subseteq N(v) $ such that $ \sum_{u\in A}f(u)\ge3 $; and (ⅲ) if $ f(v) = 1 $ for some $ v\in V $, then there exists $ A\subseteq N(v) $ such that $ \sum_{u\in A}f(u)\ge2 $. The weight of an SDIDF $ f $ is $ \sum_{v\in V}f(v) $. The signed double Italian domination number of $ G $ is the minimum weight of an SDIDF on $ G $. In this paper, we initiated the study of signed double Italian domination and proved that the decision problem associated with the signed double Italian domination is NP-complete. We also provided tight lower and upper bounds of a signed double Italian domination number of trees, and we characterized the trees achieving these bounds. Finally, we determined the signed double Italian domination number for some well-known graphs.
Citation: Ahlam Almulhim. Signed double Italian domination[J]. AIMS Mathematics, 2023, 8(12): 30895-30909. doi: 10.3934/math.20231580
A signed double Italian dominating function (SDIDF) on a graph $ G = (V, E) $ is a function $ f $ from $ V $ to $ \{-1, 1, 2, 3\} $, satisfying (ⅰ) $ \sum_{u\in N[v]}f(u)\ge1 $ for all $ v\in V $; (ⅱ) if $ f(v) = -1 $ for some $ v\in V $, then there exists $ A\subseteq N(v) $ such that $ \sum_{u\in A}f(u)\ge3 $; and (ⅲ) if $ f(v) = 1 $ for some $ v\in V $, then there exists $ A\subseteq N(v) $ such that $ \sum_{u\in A}f(u)\ge2 $. The weight of an SDIDF $ f $ is $ \sum_{v\in V}f(v) $. The signed double Italian domination number of $ G $ is the minimum weight of an SDIDF on $ G $. In this paper, we initiated the study of signed double Italian domination and proved that the decision problem associated with the signed double Italian domination is NP-complete. We also provided tight lower and upper bounds of a signed double Italian domination number of trees, and we characterized the trees achieving these bounds. Finally, we determined the signed double Italian domination number for some well-known graphs.
[1] | I. Stewart, Defend the Roman empire, Sci. Am., 281 (1999), 136–138. |
[2] | Johns Hopkins magazine, Can you protect the Roman empire? C. ReVelle, 1997. Available from: https://pages.jh.edu/jhumag/0497web/locate3.html. |
[3] | Johns Hopkins magazine, Test your solution to can you protect the Roman empire? C. ReVelle, 1997. Available from: https://pages.jh.edu/jhumag/0697web/revelle.html. |
[4] | E. Cockayne, P. Dreyer, S. M. Hedetniemi, S. T. Hedetniemi, Roman domination in graphs, Discrete Math., 278 (2004), 11–22. http://dx.doi.org/10.1016/j.disc.2003.06.004 doi: 10.1016/j.disc.2003.06.004 |
[5] | M. Chellali, T. Haynes, S. Hedetniemi, A. McRae, Roman ${2}$-domination, Discrete Appl. Math., 204 (2016), 22–28. http://dx.doi.org/10.1016/j.dam.2015.11.013 doi: 10.1016/j.dam.2015.11.013 |
[6] | R. Beeler, T. Haynes, S. Hedetniemi, Double Roman domination, Discrete Appl. Math., 211 (2016), 23–29. http://dx.doi.org/10.1016/j.dam.2016.03.017 doi: 10.1016/j.dam.2016.03.017 |
[7] | H. Abdollahzadeh Ahangar, M. Henning, C. Löwenstein, Y. Zhao, V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim., 27 (2014), 241–255. http://dx.doi.org/10.1007/s10878-012-9500-0 doi: 10.1007/s10878-012-9500-0 |
[8] | A. Karamzadeh, H. Maimani, A. Zaeembashi, On the signed Italian domination of graphs, Comput. Sci. J. Mold., 27 (2019), 204–229. |
[9] | T. Haynes, M. Henning, Perfect Italian domination in trees, Discrete Appl. Math., 260 (2019), 164–177. http://dx.doi.org/10.1016/j.dam.2019.01.038 doi: 10.1016/j.dam.2019.01.038 |
[10] | A. Egunjobi, T. Haynes, Perfect double Roman domination of trees, Discrete Appl. Math., 284 (2020), 71–85. http://dx.doi.org/10.1016/j.dam.2020.03.021 doi: 10.1016/j.dam.2020.03.021 |
[11] | A. Almulhim, Total perfect Roman domination, Symmetry, 15 (2023), 1676. http://dx.doi.org/10.3390/sym15091676 doi: 10.3390/sym15091676 |
[12] | M. Henning, W. Klostermeyer, G. MacGillivray, Perfect Roman domination in trees, Discrete Appl. Math., 236 (2018), 235–245. http://dx.doi.org/10.1016/j.dam.2017.10.027 doi: 10.1016/j.dam.2017.10.027 |
[13] | H. Naresh Kumar, Y. Venkatakrishnan, Trees with vertex-edge Roman domination number twice the domination number minus one, Proyecciones, 39 (2020), 1381–1392. http://dx.doi.org/10.22199/issn.0717-6279-2020-06-0084 doi: 10.22199/issn.0717-6279-2020-06-0084 |
[14] | B. AlSubaiei, A. Almulhim, A. Akwu, Vertex-edge perfect Roman domination number, AIMS Mathematics, 8 (2023), 21472–21483. http://dx.doi.org/10.3934/math.20231094 doi: 10.3934/math.20231094 |
[15] | H. Ahangar, M. Chellali, S. Sheikholeslami, Signed double Roman domination in graphs, Discrete Appl. Math., 257 (2019), 1–11. http://dx.doi.org/10.1016/j.dam.2018.09.009 doi: 10.1016/j.dam.2018.09.009 |
[16] | G. Hickey, F. Dehne, A. Rau-Chaplin, C. Blouin, SPR distance computation for unrooted trees, Evol. Bioinform., 4 (2008), 17–27. http://dx.doi.org/10.4137/EBO.S419 doi: 10.4137/EBO.S419 |