Research article Special Issues

Signed double Italian domination

  • Received: 30 September 2023 Revised: 11 November 2023 Accepted: 13 November 2023 Published: 17 November 2023
  • MSC : 05C69

  • A signed double Italian dominating function (SDIDF) on a graph $ G = (V, E) $ is a function $ f $ from $ V $ to $ \{-1, 1, 2, 3\} $, satisfying (ⅰ) $ \sum_{u\in N[v]}f(u)\ge1 $ for all $ v\in V $; (ⅱ) if $ f(v) = -1 $ for some $ v\in V $, then there exists $ A\subseteq N(v) $ such that $ \sum_{u\in A}f(u)\ge3 $; and (ⅲ) if $ f(v) = 1 $ for some $ v\in V $, then there exists $ A\subseteq N(v) $ such that $ \sum_{u\in A}f(u)\ge2 $. The weight of an SDIDF $ f $ is $ \sum_{v\in V}f(v) $. The signed double Italian domination number of $ G $ is the minimum weight of an SDIDF on $ G $. In this paper, we initiated the study of signed double Italian domination and proved that the decision problem associated with the signed double Italian domination is NP-complete. We also provided tight lower and upper bounds of a signed double Italian domination number of trees, and we characterized the trees achieving these bounds. Finally, we determined the signed double Italian domination number for some well-known graphs.

    Citation: Ahlam Almulhim. Signed double Italian domination[J]. AIMS Mathematics, 2023, 8(12): 30895-30909. doi: 10.3934/math.20231580

    Related Papers:

  • A signed double Italian dominating function (SDIDF) on a graph $ G = (V, E) $ is a function $ f $ from $ V $ to $ \{-1, 1, 2, 3\} $, satisfying (ⅰ) $ \sum_{u\in N[v]}f(u)\ge1 $ for all $ v\in V $; (ⅱ) if $ f(v) = -1 $ for some $ v\in V $, then there exists $ A\subseteq N(v) $ such that $ \sum_{u\in A}f(u)\ge3 $; and (ⅲ) if $ f(v) = 1 $ for some $ v\in V $, then there exists $ A\subseteq N(v) $ such that $ \sum_{u\in A}f(u)\ge2 $. The weight of an SDIDF $ f $ is $ \sum_{v\in V}f(v) $. The signed double Italian domination number of $ G $ is the minimum weight of an SDIDF on $ G $. In this paper, we initiated the study of signed double Italian domination and proved that the decision problem associated with the signed double Italian domination is NP-complete. We also provided tight lower and upper bounds of a signed double Italian domination number of trees, and we characterized the trees achieving these bounds. Finally, we determined the signed double Italian domination number for some well-known graphs.



    加载中


    [1] I. Stewart, Defend the Roman empire, Sci. Am., 281 (1999), 136–138.
    [2] Johns Hopkins magazine, Can you protect the Roman empire? C. ReVelle, 1997. Available from: https://pages.jh.edu/jhumag/0497web/locate3.html.
    [3] Johns Hopkins magazine, Test your solution to can you protect the Roman empire? C. ReVelle, 1997. Available from: https://pages.jh.edu/jhumag/0697web/revelle.html.
    [4] E. Cockayne, P. Dreyer, S. M. Hedetniemi, S. T. Hedetniemi, Roman domination in graphs, Discrete Math., 278 (2004), 11–22. http://dx.doi.org/10.1016/j.disc.2003.06.004 doi: 10.1016/j.disc.2003.06.004
    [5] M. Chellali, T. Haynes, S. Hedetniemi, A. McRae, Roman ${2}$-domination, Discrete Appl. Math., 204 (2016), 22–28. http://dx.doi.org/10.1016/j.dam.2015.11.013 doi: 10.1016/j.dam.2015.11.013
    [6] R. Beeler, T. Haynes, S. Hedetniemi, Double Roman domination, Discrete Appl. Math., 211 (2016), 23–29. http://dx.doi.org/10.1016/j.dam.2016.03.017 doi: 10.1016/j.dam.2016.03.017
    [7] H. Abdollahzadeh Ahangar, M. Henning, C. Löwenstein, Y. Zhao, V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim., 27 (2014), 241–255. http://dx.doi.org/10.1007/s10878-012-9500-0 doi: 10.1007/s10878-012-9500-0
    [8] A. Karamzadeh, H. Maimani, A. Zaeembashi, On the signed Italian domination of graphs, Comput. Sci. J. Mold., 27 (2019), 204–229.
    [9] T. Haynes, M. Henning, Perfect Italian domination in trees, Discrete Appl. Math., 260 (2019), 164–177. http://dx.doi.org/10.1016/j.dam.2019.01.038 doi: 10.1016/j.dam.2019.01.038
    [10] A. Egunjobi, T. Haynes, Perfect double Roman domination of trees, Discrete Appl. Math., 284 (2020), 71–85. http://dx.doi.org/10.1016/j.dam.2020.03.021 doi: 10.1016/j.dam.2020.03.021
    [11] A. Almulhim, Total perfect Roman domination, Symmetry, 15 (2023), 1676. http://dx.doi.org/10.3390/sym15091676 doi: 10.3390/sym15091676
    [12] M. Henning, W. Klostermeyer, G. MacGillivray, Perfect Roman domination in trees, Discrete Appl. Math., 236 (2018), 235–245. http://dx.doi.org/10.1016/j.dam.2017.10.027 doi: 10.1016/j.dam.2017.10.027
    [13] H. Naresh Kumar, Y. Venkatakrishnan, Trees with vertex-edge Roman domination number twice the domination number minus one, Proyecciones, 39 (2020), 1381–1392. http://dx.doi.org/10.22199/issn.0717-6279-2020-06-0084 doi: 10.22199/issn.0717-6279-2020-06-0084
    [14] B. AlSubaiei, A. Almulhim, A. Akwu, Vertex-edge perfect Roman domination number, AIMS Mathematics, 8 (2023), 21472–21483. http://dx.doi.org/10.3934/math.20231094 doi: 10.3934/math.20231094
    [15] H. Ahangar, M. Chellali, S. Sheikholeslami, Signed double Roman domination in graphs, Discrete Appl. Math., 257 (2019), 1–11. http://dx.doi.org/10.1016/j.dam.2018.09.009 doi: 10.1016/j.dam.2018.09.009
    [16] G. Hickey, F. Dehne, A. Rau-Chaplin, C. Blouin, SPR distance computation for unrooted trees, Evol. Bioinform., 4 (2008), 17–27. http://dx.doi.org/10.4137/EBO.S419 doi: 10.4137/EBO.S419
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(747) PDF downloads(52) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog