Research article

On the (total) Roman domination in Latin square graphs

  • Received: 14 August 2023 Revised: 14 November 2023 Accepted: 20 November 2023 Published: 01 December 2023
  • MSC : 05C69

  • Latin square, also known as Latin square matrix, refers to a kind of $ n\times n $ matrix, in which there are exactly $ n $ different symbols and each symbol appears exactly once in each row and column. A Latin square graph $ \Gamma(L) $ is a simple graph associated with a Latin square $ L $. This paper studied the relationships between the (total) Roman domination number and (total) domination number of Latin square graph $ \Gamma(L) $. We showed that $ \gamma_{R}(\Gamma(L)) = 2\gamma(\Gamma(L)) $ or $ \gamma_{R}(\Gamma(L)) = 2\gamma(\Gamma(L))-1 $, and $ \gamma_{tR}(\Gamma(L))\ge \frac{8\gamma_t(\Gamma(L))}{5} $ for $ n\ge 2 $. In 2021, Pahlavsay et al. proved $ \gamma(\Gamma(L))\ge \lceil \frac{n}{2}\rceil $ and $ \gamma_t(\Gamma(L))\ge \lceil \frac{4n-2}{7}\rceil $ for $ n\ge 2 $. In this paper, we showed that $ \gamma_R(\Gamma(L))\ge 2\lceil \frac{n}{2}\rceil $ (equality holds if, and only if, $ \gamma(\Gamma(L)) = \lceil \frac{n}{2}\rceil $) and $ \gamma_t(\Gamma(L)) > \frac{4n}{7} $ for $ n\ge 2 $. Since $ \gamma_R(G)\le 2\gamma(G) $ and $ \gamma_{tR}(G)\le 2\gamma_t(G) $ for any graph $ G $, our results can deduce or improve Pahlavsay et al.'s results. Moreover, we characterized these Latin squares for $ \gamma_R(\Gamma(L)) = 2\lceil \frac{n}{2}\rceil $, which is equal to $ \gamma(\Gamma(L)) = \lceil \frac{n}{2}\rceil $.

    Citation: Chang-Xu Zhang, Fu-Tao Hu, Shu-Cheng Yang. On the (total) Roman domination in Latin square graphs[J]. AIMS Mathematics, 2024, 9(1): 594-606. doi: 10.3934/math.2024031

    Related Papers:

  • Latin square, also known as Latin square matrix, refers to a kind of $ n\times n $ matrix, in which there are exactly $ n $ different symbols and each symbol appears exactly once in each row and column. A Latin square graph $ \Gamma(L) $ is a simple graph associated with a Latin square $ L $. This paper studied the relationships between the (total) Roman domination number and (total) domination number of Latin square graph $ \Gamma(L) $. We showed that $ \gamma_{R}(\Gamma(L)) = 2\gamma(\Gamma(L)) $ or $ \gamma_{R}(\Gamma(L)) = 2\gamma(\Gamma(L))-1 $, and $ \gamma_{tR}(\Gamma(L))\ge \frac{8\gamma_t(\Gamma(L))}{5} $ for $ n\ge 2 $. In 2021, Pahlavsay et al. proved $ \gamma(\Gamma(L))\ge \lceil \frac{n}{2}\rceil $ and $ \gamma_t(\Gamma(L))\ge \lceil \frac{4n-2}{7}\rceil $ for $ n\ge 2 $. In this paper, we showed that $ \gamma_R(\Gamma(L))\ge 2\lceil \frac{n}{2}\rceil $ (equality holds if, and only if, $ \gamma(\Gamma(L)) = \lceil \frac{n}{2}\rceil $) and $ \gamma_t(\Gamma(L)) > \frac{4n}{7} $ for $ n\ge 2 $. Since $ \gamma_R(G)\le 2\gamma(G) $ and $ \gamma_{tR}(G)\le 2\gamma_t(G) $ for any graph $ G $, our results can deduce or improve Pahlavsay et al.'s results. Moreover, we characterized these Latin squares for $ \gamma_R(\Gamma(L)) = 2\lceil \frac{n}{2}\rceil $, which is equal to $ \gamma(\Gamma(L)) = \lceil \frac{n}{2}\rceil $.



    加载中


    [1] H. A. Ahangar, J. Amjadi, S. M. Sheikholeslami, M. Soroudi, On the total Roman domination number of graphs, Ars Comb., 150 (2020), 225–240.
    [2] H. Abdollahzadeh Ahangar, M. A. Henning, V. Samodivkin, I. G. Yero, Total Roman domination in graphs, Appl. Anal. Discr. Math., 10 (2016), 501–517. https://doi.org/10.2298/AADM160802017A doi: 10.2298/AADM160802017A
    [3] N. A. Abd Aziz, M. A. Henning, N. J. Rad, H. Kamarulhaili, Improved bounds on the $k$-tuple (Roman) domination number of a graph, Graph. Combinator., 38 (2022), 75. https://doi.org/10.1007/s00373-022-02471-5 doi: 10.1007/s00373-022-02471-5
    [4] J. Amjadi, S. M. Sheikholeslami, M. Soroudi, On the total roman domination in trees, Discuss. Math. Graph T., 39 (2019), 519–532. https://doi.org/10.7151/dmgt.2099 doi: 10.7151/dmgt.2099
    [5] G. Asemian, N. J. Rad, A. Tehranian, H. Rasouli, On the total Roman domination stability in graphs, AKCE Int. J. Graphs Co., 18 (2021), 166–172. https://doi.org/10.1080/09728600.2021.1992257 doi: 10.1080/09728600.2021.1992257
    [6] D. Best, T. Marbach, R. J. Stones, I. M. Wanless, Covers and partial transversals of Latin squares, Des. Codes Cryptogr., 87 (2019), 1109–1136. https://doi.org/10.1007/s10623-018-0499-9 doi: 10.1007/s10623-018-0499-9
    [7] R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pac. J. Math., 13 (1963), 389–419. https://doi.org/10.2140/pjm.1963.13.389 doi: 10.2140/pjm.1963.13.389
    [8] B. Bollabás, Graph theory, New York: Springer-Verlag, 1979. https://doi.org/10.1007/978-1-4612-9967-7
    [9] H. Chen, C. Lu, Roman $\{2\}$-domination problem in graphs, Discuss. Math. Graph T., 42 (2022), 641–660. https://doi.org/10.7151/dmgt.2332 doi: 10.7151/dmgt.2332
    [10] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi, S. T. Hedetniemi, Roman domination in graphs, Discrete Math., 278 (2004), 11–22. https://doi.org/10.1016/j.disc.2003.06.004 doi: 10.1016/j.disc.2003.06.004
    [11] H. Gao, J. Huang, Y. Yang, Double Roman domination in generalized Petersen graphs, Bull. Iran. Math. Soc., 48 (2022), 885–894. https://doi.org/10.1007/s41980-021-00551-5 doi: 10.1007/s41980-021-00551-5
    [12] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs, New York: Marcel Dekker, 1998.
    [13] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Domination in graphs: Advanced topics, 1997.
    [14] T. W. Haynes, S. T. Hedetniemi, M. A. Henning, Structures of domination in graphs: Developments in mathematics, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-58892-2
    [15] A. D. Keedwell, J. Dénes, Latin squares and their applications, Elsevier, 2015.
    [16] Z. Li, A note on the bounds of Roman domination numbers, AIMS Math., 6 (2021), 3940–3946. https://doi.org/10.3934/math.2021234 doi: 10.3934/math.2021234
    [17] C. H. Liu, G. J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim., 26 (2013), 608–619. https://doi.org/10.1007/s10878-012-9482-y doi: 10.1007/s10878-012-9482-y
    [18] A. C. Martínez, I. Peterin, I. G. Yero, Roman domination in direct product graphs and rooted product graphs, AIMS Math., 6 (2021), 11084–11096. https://doi.org/10.3934/math.2021643 doi: 10.3934/math.2021643
    [19] B. Pahlavsay, E. Palezzato, M. Torielli, Domination for Latin square graphs, Graph. Combinator., 37 (2021), 971–985. https://doi.org/10.1007/s00373-021-02297-7 doi: 10.1007/s00373-021-02297-7
    [20] A. Poureidi, N. J. Rad, Algorithmic and complexity aspects of problems related to total Roman domination for graph, J. Comb. Optim., 39 (2020), 747–763. https://doi.org/10.1007/s10878-019-00514-x doi: 10.1007/s10878-019-00514-x
    [21] A. Poureidi, N. J. Rad, Algorithmic aspects of the independent 2-rainbow domination number and independent Roman $\{2\}$-domination number, Discuss. Math. Graph T., 42 (2022), 709–726. https://doi.org/10.7151/dmgt.2299 doi: 10.7151/dmgt.2299
    [22] A. Poureidi, A. Abd, A. Noor, N. Jafari Rad, H. Kamarulhaili, Computing strong Roman domination of trees and unicyclic graphs in linear time, Bull. Malays. Math. Sci. Soc., 45 (2022), 2509–2523. https://doi.org/10.1007/s40840-022-01301-4 doi: 10.1007/s40840-022-01301-4
    [23] H. M. Xing, X. Chen, X. G. Chen, A note on roman domination in graphs, Discrete Math., 306 (2006), 3338–3340. https://doi.org/10.1016/j.disc.2006.06.018 doi: 10.1016/j.disc.2006.06.018
    [24] J. Yang, Y. Chen, Z. Li, Some sufficient conditions for a tree to have its weak Roman domination number be equal to its domination number plus 1, AIMS Math., 8 (2023), 17702–17718. https://doi.org/10.3934/math.2023904 doi: 10.3934/math.2023904
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(932) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog