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Abstract: Latin square, also known as Latin square matrix, refers to a kind of n × n matrix, in which
there are exactly n different symbols and each symbol appears exactly once in each row and column.
A Latin square graph Γ(L) is a simple graph associated with a Latin square L. This paper studied
the relationships between the (total) Roman domination number and (total) domination number of
Latin square graph Γ(L). We showed that γR(Γ(L)) = 2γ(Γ(L)) or γR(Γ(L)) = 2γ(Γ(L)) − 1, and
γtR(Γ(L)) ≥ 8γt(Γ(L))

5 for n ≥ 2. In 2021, Pahlavsay et al. proved γ(Γ(L)) ≥ ⌈ n
2⌉ and γt(Γ(L)) ≥ ⌈ 4n−2

7 ⌉

for n ≥ 2. In this paper, we showed that γR(Γ(L)) ≥ 2⌈ n
2⌉ (equality holds if, and only if, γ(Γ(L)) = ⌈ n

2⌉)
and γt(Γ(L)) > 4n

7 for n ≥ 2. Since γR(G) ≤ 2γ(G) and γtR(G) ≤ 2γt(G) for any graph G, our results
can deduce or improve Pahlavsay et al.’s results. Moreover, we characterized these Latin squares
for γR(Γ(L)) = 2⌈ n

2⌉, which is equal to γ(Γ(L)) = ⌈ n
2⌉.

Keywords: Latin square; Latin square graphs; Roman domination number; total Roman domination
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1. Introduction

All graphs considered in this paper are undirected and simple. Let G = (V, E) be a graph where
V = V(G) is the vertex set and E = E(G) as the edge set. For any vertex v ∈ V , let NG(u) (simply,
N(u)) be the neighborhood of v and let NG[u] = NG(u)∪{u} (simply, N[u]) be the closed neighborhood
of v. Let G[S ] be the subgraph of G induced by S ⊆ V , δ(G) and ∆(G) be the minimum and maximum
degree of G, respectively.

A set D ⊆ V(G) is a dominating set if for each v ∈ V(G) either v ∈ D or v has at least one neighbor
in D. The domination number γ(G) is the minimum cardinality of all dominating sets of G. A set
Dt ⊆ V(G) is a total dominating set if each v ∈ V(G) is adjacent to at least one vertex in Dt. The total
domination number γt(G) is the minimum cardinality of all total dominating sets of G. There are many
variations on domination for different applications. Domination is well studied in graph theory and the
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literature on this subject has been surveyed and detailed in books by Haynes et al. [12–14].
A map f : V → {0, 1, 2} is a Roman dominating function of G, if for every vertex v with f (v) = 0,

there exists a vertex u ∈ N(v) such that f (u) = 2. The weight of a Roman function is given by
f (V) =

∑
u∈V f (u). The minimum weight of all Roman dominating functions on G is called the Roman

domination number of G and it is denoted by γR(G). For a Roman function f , let Vi = {v ∈ V(G) :
f (v) = i} for i ∈ {0, 1, 2}. Since these three sets can determine f , we can equivalently write f =
(V0; V1; V2), then f (V) = |V1|+ 2|V2|. Cockayne et al. [10] introduced the notion of Roman domination
in graphs. A total Roman dominating function, which was presented in [2], is a Roman dominating
function f = (V0; V1; V2) on G, satisfying that δ(G[V1

⋃
V2]) ≥ 1. The total Roman domination

number γtR(G) is the minimum weight of all total Roman dominating functions on G. The Roman
domination number and total Roman domination number have been studied widely, and many structure
properties of (total) Roman dominating sets or many good bounds for these parameters are given; see,
for example, [1, 3–5, 9, 11, 16–18, 20–24].

A Latin square of order n is an n × n matrix containing n symbols, which are contained in the
set [n] := {1, 2, . . . , n} such that each row and each column contains one copy of each symbol. Usually,
we use L to represent the Latin square. A Latin square graph Γ(L) is a simple graph associated with a
Latin square L. In this paper, we study the Roman domination number and total Roman of Latin square
graphs.

2. Preliminary results

The notion of the Latin square was introduced by Leonhard Euler in 1783 as a new kind of magic
square and plays an important role in various fields, such as in combinatorics, statistics and informatics.
In recent years, together with their associated graph, they have been intensively studied because of
their connections with other areas of mathematics and their practical applications. See the book “Latin
squares and their applications” [15] for more applications of Latin squares.
Definition 2.1. [19] Let L be a Latin square of order n and let L′ be the l2 cells defined by ℓ rows and ℓ
columns in L. Write L′c as the (n − ℓ)2 cells defined by all the other n − ℓ rows and all the other n − ℓ
columns corresponding to L′ and L. If for some 1 ≤ ℓ ≤ n, L′ forms a Latin square of order ℓ, it is
called a Latin subsquare of L.

For a Latin square, there is only one corresponding symbol s for a specific row r and column c,
which can be recorded as s = Lr,c or represented by the triple (r, c, s).
Definition 2.2. [19] For a Latin square L, we define

E(L) = {(r, c, s) : 1 ≤ r, c, s ≤ n and s = Lr,c}

to be the set of entries of L. Let A ⊆ E(L). We call {s ∈ [n] : (r, c, s) ∈ A} the symbol set of A.
Definition 2.3. [6] Let L be a Latin square of order n. A partial transversal is a subset of E(L) such
that no two entries share the same row, column or symbol. We say that a partial transversal is maximal
if it is not properly contained in any other partial transversal. A transversal is a partial transversal
with cardinality n, i.e., it is a set of entries that includes exactly one entry from each row, column, and
symbol.

Note that not every Latin square possesses a transversal.
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Bose in [7] introduced a kind of strongly regular graph by constructing a simple graph from a Latin
square.
Definition 2.4. [7] A Latin square graph Γ(L) is a simple graph generated by a Latin square L, with
vertex set E(L) and two vertices adjacent if, and only if, they are in the same row or column or have
the same symbol.
Example 2.1. A Latin square L of order four and its associated Latin square graph are shown in
Figure 1. Note that T = {(1, 1, 1), (2, 2, 3), (3, 4, 2)} is a maximal partial transversal of L and L does not
have a transversal.

Definition 2.3 (Best et al. [6]) Let L be a Latin square of order n. A partial transver-
sal is a subset of E(L) such that no two entries share the same row, column, or symbol.
We say that a partial transversal is maximal if it is not properly contained in any other
partial transversal. A transversal is a partial transversal with cardinality n, i.e. it is a
set of entries which includes exactly one entry from each row, column, and symbol.

Note that not every Latin square possesses a transversal.
Bose in [7] introduced a kind of strongly regular graphs by constructing a simple

graph from a Latin square.

Definition 2.4 (Bose [7]) A Latin square graph Γ(L) is a simple graph generated by
a Latin square L, with vertex set E(L) and two vertices are adjacent if and only if they
are in the same row or column or have the same symbol.

Example 2.1 A Latin square L of order 4 and its associated Latin square graph are
shown in Figure 1. Note that T = {(1, 1, 1), (2, 2, 3), (3, 4, 2)} is a maximal partial
transversal of L and L does not have a transversal.

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

(1, 1, 1) (1, 4, 4)

Figure 1: L, Γ(L), and red numbers are corresponding to a maximal partial transversal
of L.

Let L be a Latin square of order n ≥ 3. The Latin square graph Γ(L)) is a 3(n− 1)-
regular graph, and any two different vertices (r, c, s) and (r, c′, s′) have n neighbors
in-common, n − 2 vertices in the row r and two vertices in the columns c and c′. By
interchanging the role of rows, columns and symbols, any two different vertices (r, c, s)
and (r′, c, s′) have n neighbors in-common, any two different vertices (r, c, s) and (r′, c′, s)
also have n neighbors in-common. So any two adjacent vertices of Γ(L) have n neighbors
in-common. Any two different vertices (r, c, s) and (r′, c′, s′) have 2 neighbors in-common,
that is (r, c′, Lr,c′) and (r′, c, Lr′,c).

Note that any maximal partial transversal of L corresponds to a dominating set in
Γ(L). A transversal of L is an efficient 3-dominating set in Γ(L) (and vice versa). An
efficient 3-dominating set D of a graph G is a dominating set of G such that for each
vertex v /∈ D, |NG(D) ∩D| = 3.

Proposition 2.1 (Cockayne et al. [10]) For any graph G,

γ(G) ≤ γR(G) ≤ 2γ(G).

3

Figure 1. L, Γ(L) and red numbers are corresponding to a maximal partial transversal of L.

Let L be a Latin square of order n ≥ 3. The Latin square graph Γ(L)) is a 3(n−1)-regular graph, and
any two different vertices (r, c, s) and (r, c′, s′) have n neighbors in-common, n− 2 vertices in the row r
and two vertices in the columns c and c′. By interchanging the role of rows, columns and symbols,
any two different vertices (r, c, s) and (r′, c, s′) have n neighbors in-common and any two different
vertices (r, c, s) and (r′, c′, s) also have n neighbors in-common. So any two adjacent vertices of Γ(L)
have n neighbors in-common. Any two different vertices (r, c, s) and (r′, c′, s′) have two neighbors
in-common; that is, (r, c′, Lr,c′) and (r′, c, Lr′,c).

Note that any maximal partial transversal of L corresponds to a dominating set in Γ(L). A transversal
of L is an efficient three-dominating set in Γ(L) (and vice versa). An efficient three-dominating set D
of a graph G is a dominating set of G such that for each vertex v < D, |NG(D) ∩ D| = 3.
Proposition 2.1. [10] For any graph G,

γ(G) ≤ γR(G) ≤ 2γ(G).

It is well known [8] that almost all graphs have diameter two.
Proposition 2.2. Let G be a graph with diameter 2. Then

γR(G) = 2γ(G) − 1 or γR(G) = 2γ(G).

Moreover, if f = (V0; V1; V2) is a minimum Roman dominating function of G with |V1| minimum, then
(1) |V1| ≤ 1.
(2) γR(G) = 2γ(G) − 1 if, and only if, |V1| = 1.
(3) γR(G) = 2γ(G) if, and only if, |V1| = 0.
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Proof. Let f = (V0; V1; V2) be a minimum Roman dominating function of G with a |V1| minimum. We
will show |V1| ≤ 1. Suppose to the contrary that there exists two different vertices u, v ∈ V1. Note that
V1 is an independent set (i.e., no edges between any two distinct vertices) of G since |V1| is minimum.
Since the diameter of G is two, there exists a vertex w which is a common neighbor of u and v, then

f ′ = ((V0 ∪ {u, v}) \ {w}; V1 \ {u, v}; V2 ∪ {w})

is also a minimum Roman dominating function of G, which contradicts the assumption that |V1| is
minimum. Thus, |V1| ≤ 1. Note that V1 ∪V2 is a dominating set of G and |V1|+ |V2| ≥ γ(G). Therefore,

γR(G) = f (V(G)) = |V1| + 2|V2| ≥ 2γ(G) − |V1| ≥ 2γ(G) − 1. (2.1)

By Proposition 2.1, γR(G) ≤ 2γ(G). Hence γR(G) = 2γ(G) − 1 or γR(G) = 2γ(G).
If γR(G) = 2γ(G)−1, then |V1| = 1 by 2.1. If |V1| = 0, then γR(G) = 2γ(G) by 2.1. If γR(G) = 2γ(G)

is an even number, then |V1| = 0 by 2.1 since |V1| ≤ 1. Hence, conclusions (2) and (3) hold.

Proposition 2.3. [19] Let L be a Latin square of order n ≥ 2. Then

γ(Γ(L)) ≤ n − 1.

Observation 2.1. Let L be a Latin square of order n. Then the order of every Latin subsquare of L,
except L, is no more than ⌊ n

2⌋. If n is even and L′ is a Latin subsquare of L of order n
2 , then L′c is also a

Latin subsquare of L of order n
2 and has the same symbol set of L′.

3. Roman domination of Latin square graphs

Since any two nonadjacent vertices in a Latin square graph have two neighbors in common, the
diameter of a Latin square graph is no more than two. Indeed, the diameter of a Latin square graph is
two for n ≥ 2. By Proposition 2.2, We have the following result.
Proposition 3.1. Let L be a Latin square. Then γR(Γ(L)) = 2γ(Γ(L)) − 1 or γR(Γ(L)) = 2γ(Γ(L)).
Theorem 3.1. Let L be a Latin square of order n ≥ 2. Then

2⌈
n
2
⌉ ≤ γR(Γ(L)) ≤ 2n − 2,

and further, we have
(1) when n is even, γR(Γ(L)) = n if, and only if, there is a Latin subsquare of order n/2 which

contains a transversal.
(2) when n is odd, γR(Γ(L)) = n + 1 if, and only if, L satisfies one of the following conditions:

I. there exists a Latin subsquare L′ of order n−1
2 and a partial transversal T1 with cardinality n−1

2 in
L′c of L, where L′ and T1 have the same symbol set.

II. there exists a maximal partial transversal T2 of L with cardinality n+1
2 and all symbols of vertices

in all the other rows and all the other columns corresponding to T2 belong to the symbol set of T2.
III. there exists a Latin subsquare L′′ of order n−1

2 and a partial transversal T3 with cardinality n−1
2

in the same rows and all the other columns (or the same columns and the other rows) corresponding to
L′′ of L (see Figure 2 for example).
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Moreover, if f = (V0; V1; V2) is a minimum Roman dominating function of G with |V1| minimum
and γR(Γ(L)) = 2⌈ n

2⌉, then |V1| = 0.

1 2 3 4 5 6
2 3 1 5 4 6
3 1 2 6 4 5
4 5 6 1 2 3
5 6 4 2 3 1
6 4 5 3 1 2

1 2 3 4 5
2 1 4 5 3
3 4 5 2 1
4 5 1 3 2
5 3 2 1 4

1 2 3 4 5
2 3 1 5 4
4 5 2 1 3
5 1 4 3 2
3 4 5 2 1

1 2 3 4 5
2 1 5 3 4
3 5 4 2 1
4 3 1 5 2
5 4 2 1 3

Figure 2. Examples for Theorem 3.

Proof. By Propositions 2.1 and 2.3, γR(Γ(L)) ≤ 2γ(Γ(L)) ≤ 2n − 2.
Let f = (V0; V1; V2) be a minimum Roman dominating function of Γ(L) with |V1|minimum and V2 =

{(r1, c1, s1), . . . , (rk, ck, sk)} where |V2| = k. By Proposition 2.2, |V1| ≤ 1. Since |V1|+ 2|V2| = γR(Γ(L)) ≤
2n − 2, |V1| + |V2| ≤ n − 1 (note that |V1| is an integer). Hence there exits one row in L such that all
vertices in it belong to V0. By symmetry, we assume all vertices of Γ(L) in the first row belong to V0.
Since (1, c, L1,c) ∈ V0 should be adjacent to a vertex in V2 for every c ∈ [n] \ {c1, c2, . . . , ck}, L1,c must
be in the set {s1, s2, . . . , sk}. There are at least n − |{c1, c2, . . . , ck}| ≥ n − k such vertices, so

k ≥ |{s1, s2, . . . , sk}| ≥ n − |{c1, c2, . . . , ck}| ≥ n − k, then k ≥ ⌈
n
2
⌉. (3.1)

Hence,
γR(Γ(L)) = |V1| + 2|V2| = |V1| + 2k ≥ 2⌈

n
2
⌉. (3.2)

If γR(Γ(L)) = 2⌈n
2⌉, then |V1| = 0 since γR(Γ(L)) is even and |V1| ≤ 1. Let

A = {(r, c, Lr,c) : 1 ≤ r, c ≤ n, r , ri, c , c j, i, j = 1, 2, . . . , k}.

(1) Suppose n is even. Assume γR(Γ(L)) = n. Then these equalities hold in Eqs (3.1) and (3.2),
and 2k = n, |{c1, c2, . . . , ck}| = |{s1, s2, . . . , sk}| = k. By symmetry, |{r1, r2, . . . , rk}| = k.

Note that all vertex in A should be dominated by V2. So, Lr,c ∈ {s1, s2, . . . , sk} for any vertices in
A. Hence, the k2 cells defined by rows {c1, c2, . . . , ck} and columns {r1, r2, . . . , rk} form a Latin square
L′ of order k and V2 is a transversal of L′. Conversely, assume there is a Latin subsquare of order
n/2, which contains a transversal B. Clearly, f = (V0, ∅, B) is a Roman dominating function of Γ(L),
where V0 = V(Γ(L)) \ B, so γR(Γ(L)) ≤ 2|B| = n. Hence, γR(Γ(L)) = n.

(2) Suppose n is odd in the following. Assume γR(Γ(L)) = n + 1. Note that |V1| = 0 and n = 2k − 1.
By Eq (3.1),

2k ≥ |{s1, s2, . . . , sk}| + |{c1, c2, . . . , ck}| ≥ 2k − 1.

By symmetry,
2k ≥ |{s1, s2, . . . , sk}| + |{r1, r2, . . . , rk}| ≥ 2k − 1.

If |{s1, s2, . . . , sk}| = k − 1, then |{r1, r2, . . . , rk}| = |{c1, c2, . . . , ck}| = k. Hence, all symbols of A
belong to {s1, s2, . . . , sk}, which implies A is a Latin subsquare of order k − 1. Assume without loss of
generality sk−1 = sk. Then V2 \ {(rk, ck, sk)} is a partial transversal of L with cardinality k − 1. This
implies L satisfies condition I.
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Suppose now |{s1, s2, . . . , sk}| = k. If |{r1, r2, . . . , rk}| = |{c1, c2, . . . , ck}| = k, then T2 = V2 is a
maximal partial transversal of L with cardinality k and the symbols of A belong to the symbol set of
T2. This implies that L satisfies condition II. If |{r1, r2, . . . , rk}| = |{c1, c2, . . . , ck}| = k − 1, then all
symbols of A belong to {s1, s2, . . . , sk}, which implies A is a Latin subsquare of order k, a contradiction
with Observation 2. The remaining case is either |{r1, r2, . . . , rk}| = k − 1 or |{c1, c2, . . . , ck}| = k − 1.
Assume without loss of generality |{r1, r2, . . . , rk}| = k and |{c1, c2, . . . , ck}| = k − 1. Let

A′ = {(r, c, Lr,c) : 1 ≤ r, c ≤ n, r , ri, i = 1, 2, . . . , k, c = c j f or some j ∈ [k]}.

Since |{s1, s2, . . . , sk}| = k, the symbol set of A′ is [n] \ {s1, s2, . . . , sk}, so A′ is a Latin subsquare of
order n − k = k − 1 of L. Since |{r1, r2, . . . , rk}| = k and |{c1, c2, . . . , ck}| = k − 1, there exist two distinct
vertices u, v ∈ V2 that are in the same column and V2 \ {v} is a partial transversal with cardinality k − 1
in Ac. This implies that L satisfies condition III.

If L satisfies condition I, then let V2 = T1 ∪ {(r, c, Lr,c)}, where (r, c, Lr,c) ∈ L′c, T1 has no entries in
row r and no entries in column c. If L satisfies condition II, then let V2 = T2. If L satisfies condition III,
then let V2 = T3 ∪ {(r, c, Lr,c)}, where E(L′′) ∪ T3 has no entries in column c and Lr,c is the only entry
that is not in the symbol set of E(L′′) ∪ T3. One can check that f = (E(L) \ V2, ∅,V2) is a Roman
dominating function of L with f (E(L)) = n + 1.

By Proposition 2.1 and Theorem 3.1, we have the following result directly.
Corollary 3.1. [19] Let L be a Latin square of order n ≥ 2. Then

γ(Γ(L)) ≥ ⌈
n
2
⌉,

and the equality holds if, and only if, γR(Γ(L)) = 2⌈ n
2⌉.

By Corollary 3.1, the characterization of γR(Γ(L)) = 2⌈ n
2⌉ in Theorem 3.1 is also a characterization

of γ(Γ(L)) = ⌈ n
2⌉.

Proposition 3.2. For a Latin square of order n = 2k, according to the following block design

L=
A A + k

A + k A
,

where A is a Latin square of order k its symbol set is [k], and every symbol in A + k is equal to the
corresponding symbol in A plus k. Moreover, the symbols of the main diagonal of A are pairwise
distinct. In [k], choose two integers r0 , c0. Let L′ be a Latin square of order n with L′r,c = Lr,c,
where r , r0 or c , c0 and L′r0,c0

= L′r0+k,c0+k = Lr0,c0 + k, L′r0+k,c0
= L′r0,c0+k = Lr0,c0 . Then

γR(Γ(L′)) = 2γ(Γ(L′)) − 1 = 2k + 1.

Proof. Clearly, L′ does not contain a Latin subsquare of order k, and by Theorem 3.1 we know
that γ(Γ(L′)) ≥ k + 1. On the other hand,

S = {(1, 1, L′1,1), (2, 2, L′2,2), . . . , (k, k, L′k,k)}
⋃
{(r0 + k, c0 + k, Lr0,c0 + k)}

is a dominating set of Γ(L′) with |S | = k + 1, then γ(Γ(L′)) ≤ n
2 + 1. In conclusion, γ(Γ(L′)) = k + 1.

Let V2 = S \ {(r0 + k, c0 + k, Lr0,c0 + k)}, V1 = {(r0 + k, c0 + k, Lr0,c0 + k)} and V0 = V(Γ(L′)) \ (V1 ∪ V2),
then f = (V0; V1; V2) is a Roman dominating function of Γ(L′) with weight 2k + 1. By Proposition 3.1,
γR(Γ(L′)) ≥ 2γ(Γ(L′)) − 1 = 2k + 2 − 1 = 2k + 1. Hence, γR(Γ(L′)) = 2γ(Γ(L′)) − 1 = 2k + 1.
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Example 3.1. Let L be the Latin square of order 10 that is shown in Figure 3. One can check

S = {(1, 1, 1), (2, 2, 3), (3, 1, 8), (3, 3, 5), (4, 4, 2), (5, 5, 4)}

is a minimum dominating set of Γ(L). Let

V1 = {(8, 6, 8)}, V2 = {(1, 1, 1), (2, 2, 3), (3, 3, 5), (4, 4, 2), (5, 5, 4)},

Then f = (V(Γ(L)) \ (V1 ∪ V2),V1,V2) is a Roman dominating function of Γ(L). By Proposition 3.2,
γR(Γ(L)) = 11.

1 2 3 4 5 6 7 8 9 10
2 3 4 5 1 7 8 9 10 6
8 4 5 1 2 3 9 10 6 7
4 5 1 2 3 9 10 6 7 8
5 1 2 3 4 10 6 7 8 9
6 7 8 9 10 1 2 3 4 5
7 8 9 10 6 2 3 4 5 1
3 9 10 6 7 8 4 5 1 2
9 10 6 7 8 4 5 1 2 3
10 6 7 8 9 5 1 2 3 4

Figure 3. A Latin square of order 10 where red numbers are corresponding to V2, and blue
numbers are corresponding to V1.

4. Total Roman domination

Lemma 4.1. [2] If G is a graph without isolated vertices, then

γt(G) ≤ γtR(G) ≤ 2γt(G).

For a simple graph G, let X ⊆ V(G) and Y ⊆ X. The private neighborhood of Y corresponding to X is
defined as the set

PN(Y, X,G) = {u ∈ V(G)|N(u) ∩ X ⊆ Y}.

Lemma 4.2. Let G be a graph without isolated vertices and each edge of which lies in a triangle.
Let f = (V0; V1; V2) be a minimum total Roman dominating function of G with |V1| minimum. Then
∅ , PN(x,V1 ∪ V2,G) ⊆ V2 for any vertex x ∈ V1 and V2 is a dominating set of G. Further, if any two
nonadjacent vertices have a common neighbor in G and ∆(G) ≤ |V(G)| − 2, then γtR(G) ≥ 8γt(G)

5 .

Proof. Let x be any vertex in V1. Since every vertex in V0 is adjacent to a vertex in V2, PN(x,V1 ∪

V2,G) ∩ V0 = ∅. Since f = (V0; V1; V2) is a total Roman dominating function of G, there exists a
vertex y ∈ V1 ∪ V2 that is adjacent to x in G. If PN(x,V1 ∪ V2,G) = ∅, then

f1 = (V0 ∪ {x}; V1 \ {x, y}; V2 ∪ {y})
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is also a minimum total Roman dominating function with |V1 \ {x, y}| < |V1|, a contradiction. Hence
PN(x,V1 ∪ V2,G) , ∅.

We prove PN(x,V1 ∪ V2,G) ⊆ V2. Suppose to the contrary that there exists a vertex y ∈ PN(x,V1 ∪

V2,G) ∩ V1. If x ∈ PN(y,V1 ∪ V2,G), then

f2 = ((V0 ∪ {x, y}) \ {z}; V1 \ {x, y}; V2 ∪ {z})

is also a minimum total Roman dominating function with |V1 \ {x, y}| < |V1|, a contradiction, where z is
a common neighbor of x and y since edge xy lies in a triangle. Assume x < PN(y,V1 ∪ V2,G). Then

f3 = (V0 ∪ {y},V1 \ {x, y},V2 ∪ {x})

is also a minimum total Roman dominating function with |V1 \ {x, y}| < |V1|, a contradiction. Therefore,
PN(x,V1 ∪ V2,G) ⊆ V2.

For any vertex x ∈ V1, since ∅ , PN(x,V1 ∪ V2,G) ⊆ V2, x has a neighbor in V2, so V2 is a
dominating set of G.

Assume any two nonadjacent vertices have a common neighbor in G and ∆(G) ≤ |V(G)| − 2. The
last inequality implies that γtR(G) ≥ 4. If |V1| ≤ 1, then

γtR(G) = |V1| + 2|V2| ≥ 2(|V1| + |V2|) − 1 ≥ 2γt(G) − 1 ≥
8γt(G)

5
.

Suppose |V1| ≥ 2. For any two different vertices x, y ∈ V1, we show |PN({x, y},V1 ∪ V2,G)| ≥ 3.
Suppose to the contrary that there exist two different vertices x, y ∈ V1 such that PN(x,V1 ∪ V2,G) =
{x′}, PN(y,V1 ∪ V2,G) = {y′} and PN({x, y},V1 ∪ V2,G) = {x′, y′} (note that |PN(x,V1 ∪ V2,G)| ≥ 1
and |PN(y,V1 ∪ V2,G)| ≥ 1). Since x′, y′ ∈ V2, NG(x′) ∩ (V1 ∪ V2) = {x} and NG(y′) ∩ (V1 ∪ V2) = {y}.
Let

f4 = ((V0 ∪ {x, y}) \ {z}; (V1 \ {x, y}) ∪ {z}; V2),

where z is a common neighbor of x′ and y′. Then f4 is also a total Roman dominating function with
weight f4(V(G)) = f (V(G)) − 1 contradicting the minimality of f . Since ∅ , PN(w,V1 ∪ V2,G) ⊆ V2

for any vertex w in V1 and |V1| is minimum, PN({x, y},V1 ∪ V2,G) ⊆ V2 for any two different vertices
x, y ∈ V1. Hence,

|V1|

2
≤
|V2|

3
.

Therefore,

γtR(G) = |V1| + 2|V2|

= |V1| +
8|V2|

5
+

2|V2|

5

≥ |V1| +
8|V2|

5
+

3|V1|

5

≥
8(|V1| + |V2|)

5

≥
8γt(G)

5
.
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A strongly regular graph with parameters (v, k, λ, µ) is a regular graph with v vertices of degree k
such that every two adjacent vertices have exactly λ common neighbors and every two non-adjacent
vertices have exactly µ common neighbors.
Corollary 4.1. If G is a strongly regular graph with parameters (v, k, λ, µ) and λµ ≥ 1, then γtR(G) ≥
8γt(G)

5 . Furthermore, if L is a Latin square of order n ≥ 2, then γtR(Γ(L)) ≥ 8γt(Γ(L))
5 .

Lemma 4.3. [19] Let L be a Latin square of order n ≥ 3. Then

γt(Γ(L)) ≤ n − 1.

Theorem 4.1. Let L be a Latin square of order n ≥ 2. Then

γtR(Γ(L)) >
8n
7
.

Proof. One can easily obtain that γtR(Γ(L)) = 3, 4 for n = 2, 3, respectively, which implies the
inequality holds. Further, assume n ≥ 4. Let f = (V0; V1; V2) be a minimum total Roman dominating
function of G = Γ(L) with V1 minimum. Note that any two adjacent vertices Γ(L) have n neighbors in
common, which satisfies the conditions in Lemma 4.2. By Lemma 4.2, V2 is a dominating set of G.
Let V21 be the set of all isolated vertices in G[V2] and let V22 = V2 \ V21. By the definition of the total
Roman dominating function, each vertex in V21 is adjacent to a vertex in V1. By definition of Latin
square graphs, |NG(v) ∩ V21| ≤ 3 for any vertex v ∈ V1 (V21 is independent and any vertex in V21 is
adjacent to a vertex in V1). Therefore,

|V21| ≤ 3|V1| ⇒ |V22| ≥ |V2| − 3|V1|. (4.1)

For all i = 1, 2, . . . , n, define ri = |{(i, c, s) ∈ V22|1 ≤ c, s ≤ n}|, ci = |{(r, i, s) ∈ V22|1 ≤ r, s ≤ n}|,
si = |{(r, c, i) ∈ V22|1 ≤ r, c ≤ n}|. Moreover, define

r =

n∑
i=1,ri,0

(ri − 1), c =
n∑

i=1,ci,0

(ci − 1), s =
n∑

i=1,si,0

(si − 1).

Let H be the graph with vertex set V22 and edges as follows. Two vertices in the same row
(r, c1, s1), (r, c2, s2) ∈ V22, with c1 < c2, are adjacent if, and only if, there does not exist (r, c3, s3) ∈ V22

with c1 < c3 < c2. Two vertices in the same column (r1, c, s1), (r2, c, s2) ∈ V22, with r1 < r2, are
adjacent if, and only if, there does not exist (r3, c, s3) ∈ V22 with r1 < r3 < r2. Two vertices in the same
symbol (r1, c1, s), (r2, c2, s) ∈ V22, with r1 < r2, are adjacent if, and only if, there does not
exist (r3, c3, s) ∈ V22 with r1 < r3 < r2. By construction |E(H)| = r + c + s, since δ(G[V22]) ≥ 1,
δ(H) ≥ 1,

|E(H)| = r + c + s ≥
|V22|

2
. (4.2)

By Lemmas 4.1 and 4.3, γtR(G) ≤ 2γt(G) ≤ 2n − 2. We know that L has at least one row and one
column whose cells do not correspond to any vertices of V2. Let c0 denote the column of L that does
not contain any vertices of V2 and, similarly, r0 the row of L that do not contain any vertices of V2. In
c0, there are at least n − |V2| + r vertices that do not share a common row with entries corresponding
to vertices in V2. Since V2 is a dominating set of Γ(L), all these n − |V2| + r vertices corresponding to
entries in c0 are dominated by vertices of V2 that share the same symbols. Hence,

n − |V2| + r ≤ |V2| − s. (4.3)
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Likewise,
n − |V2| + c ≤ |V2| − s. (4.4)

Plus (4.3) and (4.4), we have
2n + (r + c + s) ≤ 4|V2|. (4.5)

By (4.1) and (4.2), we have

2n +
|V2| − 3|V1|

2
≤ 4|V2|,

and equivalently

4n ≤ 7|V2| + 3|V1| ≤
7
2

(2|V2| + |V1|) =
7
2
γtR(G). (4.6)

Finally, we have

γtR(G) ≥
8n
7
.

Suppose γtR(G) = 8n
7 . Then all equalities hold in the above equations and we have

|V1| = s = 0, |V2| =
4n
7
, r = c =

n
7
.

Hence, L has n − |V2| + r =
4n
7 rows and also 4n

7 columns whose cells do not corresponding to any
vertices of V2. Let L′ be the 4n

7 ×
4n
7 submatrix of L obtained from L induced by these 4n

7 rows and
also 4n

7 columns. Since all vertices correspond to L′ should be dominated by vertices of V2 that share
the same symbols and |V2| =

4n
7 , L′ is a Latin subsquare of order 4n

7 , which contradicts Observation 2.
Therefore,

γtR(G) >
8n
7
.

In [19], Pahlavsay et al. proved γt(Γ(L)) ≥ 4n−2
7 for n ≥ 2. Since 2γt(Γ(L)) ≥ γtR(Γ(L)) by

Lemma 4.1, we improve Pahlavsay et al.’s result to the following result by Theorem 4.1.
Corollary 4.2. Let L be a Latin square of order n ≥ 2. Then

γt(Γ(L)) >
4n
7
.

Example 4.1. Figure 4 is a Latin square L of order six. Consider a total Roman dominating function
f = (V0; V1; V2), where V2 = {(1, 1, 1), (2, 2, 3), (3, 3, 2)}, V1 = {(3, 1, 3)} and all remaining vertices
belong to V0, then we have γtR(Γ(L)) ≤ 7. Note that V1 ∪ V2 is a total dominating set of Γ(L). Hence
γt(Γ(L)) ≤ 4. On the other hand, by Theorem 4.1 and Corollary 4.2, γtR(Γ(L)) ≥ ⌈8×6

7 ⌉ = 7 and
γt(Γ(L)) ≥ ⌈4×6

7 ⌉ = 4. Hence, γtR(Γ(L)) = 7 and γt(Γ(L)) = 4. This example shows all lower bounds for
γtR(Γ(L)) in this section are tight.
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1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 5 6 1 2 3
5 6 4 2 3 1
6 4 5 3 1 2

Figure 4. A Latin square of order six.

5. Conclusions

In 2021, Pahlavsay et al. [19] studied the domination problems for Latin square graphs. We followed
their results and studied the Roman domination problems for Latin square graphs. We obtained few
tight bounds for these parameters. Our results generalized Pahlavsay et al.’s results. Domination in
graphs has many variations (such as, p-domination, paired domination). The readers can study other
domination problems of Latin square graphs.
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