Processing math: 100%
Research article Special Issues

Mathematical Modelling and optimal control of pneumonia disease in sheep and goats in Al-Baha region with cost-effective strategies

  • In this work, the concept of the fractional derivative is used to improve a mathematical model for the transmission dynamics of pneumonia in the Al-Baha region of the Kingdom of Saudi Arabia. We establish a dynamics model to predict the transmission of pneumonia in some local sheep and goat herds. The proposed model is a generalization of a system of five ordinary differential equations of the first order, regarding five unknowns, which are the numbers of certain groups of animals (susceptible, vaccinated, carrier, infected, and recovered). This consists of investigating the equilibrium, basic reproduction number, stability analysis, and bifurcation analysis. It is observed that the free equilibrium point is local and global asymptotic stable if the basic reproduction number is less than one, and the endemic equilibrium is local and global asymptotic stable if the basic reproduction number is greater than one. The optimal control problem is formulated using Pontryagin's maximum principle, with three control strategies: Disease prevention through education, treatment, and screening. The most cost-effective intervention strategy to combat the pneumonia pandemic is a combination of prevention and treatment, according to the cost-effectiveness analysis of the adopted control techniques. A numerical simulation is performed, and the significant data are graphically displayed. The results predicted by the model show a good agreement with the actual reported data.

    Citation: Sayed Saber, Azza M. Alghamdi, Ghada A. Ahmed, Khulud M. Alshehri. Mathematical Modelling and optimal control of pneumonia disease in sheep and goats in Al-Baha region with cost-effective strategies[J]. AIMS Mathematics, 2022, 7(7): 12011-12049. doi: 10.3934/math.2022669

    Related Papers:

    [1] Meroua Medjoudja, Mohammed El hadi Mezabia, Muhammad Bilal Riaz, Ahmed Boudaoui, Saif Ullah, Fuad A. Awwad . A novel computational fractional modeling approach for the global dynamics and optimal control strategies in mitigating Marburg infection. AIMS Mathematics, 2024, 9(5): 13159-13194. doi: 10.3934/math.2024642
    [2] Shinta A. Rahmayani, Dipo Aldila, Bevina D. Handari . Cost-effectiveness analysis on measles transmission with vaccination and treatment intervention. AIMS Mathematics, 2021, 6(11): 12491-12527. doi: 10.3934/math.2021721
    [3] Reny George, Sina Etemad, Fahad Sameer Alshammari . Stability analysis on the post-quantum structure of a boundary value problem: application on the new fractional (p,q)-thermostat system. AIMS Mathematics, 2024, 9(1): 818-846. doi: 10.3934/math.2024042
    [4] Asma Hanif, Azhar Iqbal Kashif Butt . Atangana-Baleanu fractional dynamics of dengue fever with optimal control strategies. AIMS Mathematics, 2023, 8(7): 15499-15535. doi: 10.3934/math.2023791
    [5] Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216
    [6] Ying Yu, Jiaomin Liu, Jiadong Ren, Qian Wang, Cuiyi Xiao . Minimize the impact of rumors by optimizing the control of comments on the complex network. AIMS Mathematics, 2021, 6(6): 6140-6159. doi: 10.3934/math.2021360
    [7] Ateq Alsaadi . Advancing water quality management: A synergistic approach using fractional differential equations and neural networks. AIMS Mathematics, 2025, 10(3): 5332-5352. doi: 10.3934/math.2025246
    [8] Ahmed Alshehri, Miled El Hajji . Mathematical study for Zika virus transmission with general incidence rate. AIMS Mathematics, 2022, 7(4): 7117-7142. doi: 10.3934/math.2022397
    [9] Youming Guo, Tingting Li . Dynamics and optimal control of an online game addiction model with considering family education. AIMS Mathematics, 2022, 7(3): 3745-3770. doi: 10.3934/math.2022208
    [10] Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries . Computational modeling of financial crime population dynamics under different fractional operators. AIMS Mathematics, 2023, 8(9): 20755-20789. doi: 10.3934/math.20231058
  • In this work, the concept of the fractional derivative is used to improve a mathematical model for the transmission dynamics of pneumonia in the Al-Baha region of the Kingdom of Saudi Arabia. We establish a dynamics model to predict the transmission of pneumonia in some local sheep and goat herds. The proposed model is a generalization of a system of five ordinary differential equations of the first order, regarding five unknowns, which are the numbers of certain groups of animals (susceptible, vaccinated, carrier, infected, and recovered). This consists of investigating the equilibrium, basic reproduction number, stability analysis, and bifurcation analysis. It is observed that the free equilibrium point is local and global asymptotic stable if the basic reproduction number is less than one, and the endemic equilibrium is local and global asymptotic stable if the basic reproduction number is greater than one. The optimal control problem is formulated using Pontryagin's maximum principle, with three control strategies: Disease prevention through education, treatment, and screening. The most cost-effective intervention strategy to combat the pneumonia pandemic is a combination of prevention and treatment, according to the cost-effectiveness analysis of the adopted control techniques. A numerical simulation is performed, and the significant data are graphically displayed. The results predicted by the model show a good agreement with the actual reported data.



    We denote by (x,y) (resp. [x,y]) the greatest common divisor (resp. least common multiple) of any given integers x and y. Let a,b and n be positive integers and S={x1,...,xn} be a set of n distinct positive integers. Let f be an arithmetic function and we denote by (f(S)) (resp. (f[S])) the n×n matrix having f evaluated at (xi,xj) (resp. [xi,xj]) as its (i,j)-entry. Particularly, the n×n matrix (Sa)=((xi,xj)a), having the ath power (xi,xj)a as its (i,j) -entry, is called the ath power GCD matrix on S. The n×n matrix [Sa]=([xi,xj]a), having the ath power [xi,xj]a as its (i,j)-entry, is called the ath power LCM matrix on S. These are simply called the GCD matrix and LCM matrix respectively if a=1. The set S is said to be factor closed (FC) if it contains every divisor of x for any xS. The set S is said to be gcd closed (resp. lcm closed) if for all i and j, (xi,xj) (resp. [xi,xj]) is in S. Evidently, an FC set is gcd closed but not conversely. In 1875, Smith [33] published his famous theorem stating that the determinant of the GCD matrix (S) defined on the set S={1,...,n} is the product nk=1φ(k), where φ is Euler's totient function. Since then many interesting generalizations of Smith's determinant and related results have been published (see, for example, [1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32] and [34,35,36,37,38,39,40,41,42]).

    Divisibility is an important topic in the field of power GCD matrices and power LCM matrices. Bourque and Ligh [5] showed that if S is an FC set, then the GCD matrix (S) divides the LCM matrix [S] in the ring Mn(Z) of n×n matrices over the set Z of integers. That is, there exists an AMn(Z) such that [S]=(S)A or [S]=A(S). Hong [19] showed that such factorization is no longer true in general if S is gcd closed. Bourque and Ligh [8] extended their own result showing that if S is factor closed, then the power GCD matrix (Sa) divides the power LCM matrix [Sa] in the ring Mn(Z). The set S is called a divisor chain if there exists a permutation σ on {1,...,n} such that xσ(1)|...|xσ(n). Obviously a divisor chain is gcd closed but the converse is not true. For x,yS, and x<y, if x|y and the conditions x|d|y and dS imply that d{x,y}, then we say that x is a greatest-type divisor of y in S. For xS, we denote by GS(x) the set of all greatest-type divisors of x in S. By [19], we know that there is gcd-closed set S with maxxS{|GS(x)|}=2 such that (S)1[S]Mn(Z). In [26], Hong, Zhao and Yin showed that if S is gcd closed and maxxS{|GS(x)|}=1, then the GCD matrix (S) divides the LCM matrix [S] in Mn(Z). In [20], Hong showed that (f(S))|(f[S]) holds in the ring Mn(Z) when S is a divisor chain and f is an integer-valued multiplicative function satisfying that f(min(S))|f(x) for any xS.

    Hong [22] initiated the investigation of divisibility among power GCD matrices and among power LCM matrices. In fact, Hong [22] proved that the power GCD matrix (Sa) divides the power GCD matrix (Sb) if a|b and S is a divisor chain. Hong also showed that the power LCM matrix [Sa] divides the power LCM matrix [Sb] if a|b and S is a divisor chain. But such factorizations are not true if a|b and gcd(S)=1 as well |S|2, where by |S| and gcd(S) we denote the cardinality of the set S and the greatest common divisor of all the elements in S, respectively. We say that the set S consists of two coprime divisor chains if we can partition S as S=S1S2, where S1 and S2 are divisor chains and each element of S1 is coprime to each element of S2. Later on, Hong's results were extended by Tan et al. These results confirm partially Conjectures 4.2-4.4 of [22]. It was proved in [36] that if a|b, then (Sa)|(Sb), [Sa]|[Sb] and (Sa)|[Sb] hold in the ring Mn(Z) if and only if both xayb1xaya1 and xbya1xaya1 are integers, where S=S1S2 with S1 and S2 being divisor chains and x=min(S1) and y=min(S2). From this one can read that even though a|b and S consists of two coprime divisor chains, but if 1S, then the divisibility theorems among power GCD matrices and among power LCM matrices need not always hold. Meanwhile, Tan, Lin and Liu found surprisingly that the divisibility theorems among determinants of power GCD matrices and among determinants of power LCM matrices should always hold. That is, they showed that if a|b and S consists of two coprime divisor chains as well 1S, then det(Sa)|det(Sb), det[Sa]|det[Sb] and det(Sa)|det[Sb].

    The main aim of this paper is to generalize this interesting result to the matrices of the forms det(fa(S)) and det(fa[S]), where the arithmetic function fa is defined for any positive integer x by fa(x)=(f(x))a. We will study the divisibility among det(fa(S)) and det(fb(S)) and among det(fa[S]) and det(fb[S]) when a|b. We also investigate the divisibility among det(f(Sa)) and det(f(Sb)) and among det(f[Sa]) and det(f[Sb]) when a|b, where Sa:={xa|xS} is the ath power set of S. In particular, we show that if S consists of two coprime divisor chains with 1S and f is an integer-valued multiplicative function (see, for instance, [2]), then for any positive integer a, we have det(f(Sa))|det(f[Sa]). But it is unclear whether or not the n×n matrix (f[Sa]) is divisible by the n×n matrix (f(Sa)) in the ring Mn(Z) when S consists of two coprime divisor chains with 1S and f is integer-valued and multiplicative. This problem remains open. We guess that the answer to this question is affirmative.

    This paper is organized as follows. First of all, we recall in Section 2 Hong's formulas for det(f(S)) and det(f[S]) when S is gcd closed, and then use them to give formulae for the determinants of matrices associated with arithmetic functions on divisor chains. Consequently, in Section 3, we use these results to derive the formulae for the determinants of matrices associated with arithmetic functions on two coprime divisor chains. The final section is to present the main results and their proofs. Our results extend Hong's results[20,22] and the Tan-Lin-Liu results [36].

    In the close future, we will explore the divisibility among the power matrices associated with integer-valued arithmetic functions.

    In the present section, we provide formulas for the determinants of matrices associated with arithmetic functions on divisor chains. For this purpose, we need the concept of greatest-type divisor introduced by Hong in 1996 (see, for example, [16] and [17]). Notice that the concept of greatest-type divisor played central roles in Hong's solution [16,17] to the Bourque-Ligh conjecture [5], in Cao's partial answer [9] to Hong's conjecture [18] as well as in Li's partial answer [28] to Hong's conjecture [21]. We begin with the following formulas due to Hong.

    Lemma 2.1. ([21]) Let f be an arithmetic function and S be a gcd-closed set. Then

    det(f(S))=xSJGS(x)(1)|J|f(gcd(J{x})))

    and if f is multiplicative, then

    det(f[S])=xSf(x)2JGS(x)(1)|J|f(gcd(J{x})).

    We can now use Hong's formulae to deduce the formulae for det(Sa) and det[Sa] when S is a divisor chain.

    Theorem 2.2. Let f be an arithmetic function and S={x1,...,xn} be a divisor chain such that x1|...|xn and n2. Then

    det(f(S))=f(x1)ni=2(f(xi)f(xi1))

    and if f is multiplicative, then

    det(f[S])=(1)n1f(xn)ni=2(f(xi)f(xi1)).

    Proof. Since x1|x2|...|xn, we have GS(x1)=ϕ and GS(xi)={xi1} for 2in. Then Theorem 2.2 follows immediately from Lemma 2.1.

    This completes the proof of Theorem 2.2.

    In this section, we give the formulae calculating the determinants of matrices associated with arithmetic functions on two coprime divisor chains.

    Theorem 3.1. Let f be an arithmetic function and S={x1,...,xn,y1,...,ym}, where x1|...|xn, y1|...|ym and gcd(xn,ym)=1. Then

    det(f(S))=(f(x1)f(y1)f(1)2)(n1i=1(f(xi+1)f(xi)))(m1j=1(f(yj+1)f(yj)))

    and if f is multiplicative, then

    det(f[S])=(1)m+n1f(xn)f(ym)(f(x1)f(y1)1)(n1i=1(f(xi+1)f(xi)))(m1j=1(f(yj+1)f(yj))).

    Proof. Write Si:={x1,...,xi} and Tj:={y1,...,yj} for all integers i and j with 1in and 1jm. Then S=SnTm.

    First let n=1. Then

    det(f(S))=det(f(S1Tm))=det(f(x1)f(1)f(1)f(1)f(1)f(y1)f(y1)f(y1)f(1)f(y1)f(y2)f(y2)f(1)f(y1)f(y2)f(ym)).

    Let f(y1)=0. If m=1, then it is clear that

    det(f(S))=f(x1)f(y1)f(1)2

    as expected. If m2, then we can calculate that

    det(f(S))=f(1)2det(f(˜Tm1)),

    where ˜Tm1:=Tm{y1}. If m=2, then det(f(S))=f(1)2f(y2) since det(f(˜T1))=f(y2). If m3, then it follows from Theorem 2.2 that

    det(f(S))=f(1)2f(y2)m1j=2(f(yj+1)f(yj))

    as desired.

    Now let f(y1)0. Then replacing the first row by the sum of itself and f(1)f(y1) multiple of the second row and using Theorem 2.2, one arrives at

    det(f(S))=det(f(x1)f(1)2f(y1)000f(1)f(y1)f(y1)f(y1)f(1)f(y1)f(y2)f(y2)f(1)f(y1)f(y2)f(ym))=(f(x1)f(1)2f(y1))det(f(Tm))=(f(x1)f(1)2f(y1))f(y1)m1j=1(f(yj+1)f(yj))=(f(x1)f(y1)f(1)2)m1j=1(f(yj+1)f(yj))

    as required. Thus the first formula of Theorem 3.1 is true when n=1.

    Consequently, let n>1. Then we deduce that

    det(f(S))=det(f(SnTm))=det(f(x1)f(x1)f(x1)f(x1)f(1)f(1)f(1)f(x1)f(x2)f(x2)f(x2)f(1)f(1)f(1)f(x1)f(x2)f(xn1)f(xn1)f(1)f(1)f(1)f(x1)f(x2)f(xn1)f(xn)f(1)f(1)f(1)f(1)f(1)f(1)f(1)f(y1)f(y1)f(y1)f(1)f(1)f(1)f(1)f(y1)f(y2)f(y2)f(1)f(1)f(1)f(1)f(y1)f(y2)f(ym)).

    Replacing nth row by the sum of itself and (1) multiple of (n1)th row gives us that

    det(f(S))=det(f(x1)f(x1)f(x1)f(x1)f(1)f(1)f(1)f(x1)f(x2)f(x2)f(x2)f(1)f(1)f(1)f(x1)f(x2)f(xn1)f(xn1)f(1)f(1)f(1)000f(xn)f(xn1)000f(1)f(1)f(1)f(1)f(y1)f(y1)f(y1)f(1)f(1)f(1)f(1)f(y1)f(y2)f(y2)f(1)f(1)f(1)f(1)f(y1)f(y2)f(ym))=(f(xn)f(xn1))det(f(Sn1Tm))=(f(xn)f(xn1))(f(xn1)f(xn2))(f(x2)f(x1))det(f(S1Tm))=(f(x1)f(y1)f(1)2)(n1i=1(f(xi+1)f(xi)))(m1j=1(f(yj+1)f(yj)))

    as desired. This concludes the proof of the first part of Theorem 3.1.

    We are now in the position to show the second part of Theorem 3.1. Since f is multiplicative, one has f(1)=1 and

    f(gcd(xi,xj))f(lcm(xi,xj))=f(xi)f(xj).

    It then follows that

    (f[S])=Λ(1f(S))Λ,

    where

    Λ:=diag(f(x1),...,f(xn),f(y1),...,f(ym))

    is the (n+m)×(n+m) diagonal matrix with f(x1),...,f(xn),f(y1),...,f(ym) as its diagonal elements. Therefore

    det(f[S])=(ni=1f2(xi))(mj=1f2(yj))det(1f(S)).

    By the first part of Theorem 3.1, one derives that

    det(1f(S))=(1f(x1)f(y1)1f2(1))n1i=1(1f(xi+1)1f(xi))m1j=1(1f(yj+1)1f(yj))=1f(x1)f(y1)f(x1)f(y1)n1i=1(f(xi)f(xi+1))f(x1)f2(x2)f2(xn1)f(xn)m1j=1(f(yj)f(yj+1))f(y1)f2(y2)f2(ym1)f(ym).

    So we obtain that

    det(f[S])=(ni=1f2(xi))(mj=1f2(yj))×1f(x1)f(y1)f(x1)f(y1)n1i=1(f(xi)f(xi+1))f(x1)f2(x2)f2(xn1)f(xn)m1j=1(f(yj)f(yj+1))f(yj)f2(y2)f2(ym1)f(ym)=(1)m+n1f(xn)f(ym)(f(x1)f(y1)1)(n1i=1(f(xi+1)f(xi)))(m1j=1(f(yj+1)f(yj)))

    as desired.

    This ends the proof of Theorem 3.1.

    In this last section, we first study the divisibility among determinants of power matrices associated with integer-valued arithmetic functions. We begin with the following result that is the first main result of this section.

    Theorem 4.1. Let f be an integer-valued arithmetic function and let a and b be positive integers such that a|b. Let S consist of two coprime divisor chains with 1S. Then det(fa(S))|det(fb(S)). Furthermore, if f is multiplicative, then det(fa[S])|det(fb[S]) and det(fa(S))|det(fb[S]).

    Proof. Since S consists of two coprime divisor chains and 1S, without loss of any generality, we may let S={x1,...,xn,y1,...,ym}, where x1|...|xn, y1|...|ym and gcd(xn,ym)=1. Then with f replaced by fa and fb, Theorem 3.1 tells us that

    det(fa(S))=(fa(x1)fa(y1)f(1)2a)(n1i=1(fa(xi+1)fa(xi)))(m1j=1(fa(yj+1)fa(yj))),
    det(fb(S))=(fb(x1)fb(y1)f(1)2b)(n1i=1(fb(xi+1)fb(xi)))(m1j=1(fb(yj+1)fb(yj))),
    det(fa[S])=(1)m+n1fa(xn)fa(ym)(fa(x1)fa(y1)1)×(n1i=1(fa(xi+1)fa(xi)))(m1j=1(fa(yj+1)fa(yj)))

    and

    det(fb[S])=(1)m+n1fb(xn)fb(ym)(fb(x1)fb(y1)1)(n1i=1(fb(xi+1)fb(xi)))(m1j=1(fb(yj+1)fb(yj))).

    Now let det(fa(S))=0. Then fa(x1)fa(y1)f(1)2a=0, or fa(xi+1)fa(xi)=0 for some integer i with 1in1, or fa(yj+1)fa(yj))=0 for some integer j with 1jm1. Since a|b, one then deduces that fb(x1)fb(y1)f(1)2b=0, or fb(xi+1)fb(xi)=0 for some integer i with 1in1, or fb(yj+1)fb(yj))=0 for some integer j with 1jm1. Thus det(fb(S))=det(fb[S])=0 which infers that det(fa(S))|det(fb(S)), det(fa[S])|det(fb[S]) and det(fa(S))|det(fb[S]) as desired. Likewise, if det(fa[S])=0, then we can deduce that det(fb[S])=0. Hence det(fa[S])|det(fb[S]) as expected. So Theorem 4.1 holds in this case.

    In what follows, we let det(fa(S))0 and det(fa[S])0. Since a|b, we may let b=ka for some integer k. Therefore

    det(fb(S))det(fa(S))=(fb(x1)fb(y1)f(1)2b)(n1i=1(fb(xi+1)fb(xi)))(m1j=1(fb(yj+1)fb(yj)))(fa(x1)fa(y1)f(1)2a)(n1i=1(fa(xi+1)fa(xi)))(m1j=1(fa(yj+1)fa(yj)))=(fka(x1)fka(y1)f(1)2ka)(n1i=1(fka(xi+1)fka(xi)))(m1j=1(fka(yj+1)fka(yj)))(fa(x1)fa(y1)f(1)2a)(n1i=1(fa(xi+1)fa(xi)))(m1j=1(fa(yj+1)fa(yj)))=(kt=1(f(x1)f(y1))(kt)af2(t1)a(1))(n1i=1kt=1(f(xi+1))(kt)af(t1)a(xi))×(m1j=1kt=1(f(yj+1))(kt)af(t1)a(yj))Z.

    This implies that det(fa(S))|det(fb(S)).

    Similarly, if f is multiplicative and integer-valued, then one deduces that f(1)=1,

    det(fb[S])det(fa[S])=fb(xn)fb(ym)(fb(x1)fb(y1)1)(n1i=1(fb(xi+1)fb(xi)))(m1j=1(fb(yj+1)fb(yj)))fa(xn)fa(ym)(fa(x1)fa(y1)1)(n1i=1(fa(xi+1)fa(xi)))(m1j=1(fa(yj+1)fa(yj)))=(f(xn)f(ym))(k1)a(kt=1(f(x1)f(y1))(kt)a)(n1i=1kt=1(f(xi+1))(kt)af(t1)a(xi))×(m1j=1kt=1(f(yj+1))(kt)af(t1)a(yj))Z

    and

    det(fb[S])det(fa(S))=(1)m+n1×fb(xn)fb(ym)(fb(x1)fb(y1)1)(n1i=1(fb(xi+1)fb(xi)))(m1j=1(fb(yj+1)fb(yj)))(fa(x1)fa(y1)1)(n1i=1(fa(xi+1)fa(xi)))(m1j=1(fa(yj+1)fa(yj)))=(1)m+n1fb(xn)fb(ym)(kt=1(f(x1)f(y1))(kt)a)×(n1i=1kt=1(f(xi+1))(kt)af(t1)a(xi))(m1j=1kt=1(f(yj+1))(kt)af(t1)a(yj))Z

    as one requires. Thus Theorem 4.1 is true if det(fa(S))0 and det(fa[S])0.

    This finishes the proof of Theorem 4.1.

    We point out that the condition a|b in Theorem 4.1 is not necessary as the following example shows.

    Example 4.1. (ⅰ). Let f(x)=x+1, a=2,b=5 and S={2,4,3}. Then a|b. Clearly, one has

    (f2(S))=(99492544416) and (f5(S))=(2432433224331253232321024).

    So we can compute and get that

    det(f2(S))=2048 and det(f5(S))=714182656.

    Hence

    det(f5(S))det(f2(S))=348722Z.

    That is, one has det(f2(S))|det(f5(S)).

    (ⅱ). Let f(x)=φ(x), a=2,b=3 and S={2,4,7}. Then a|b and

    (φ2(S))=(1111411136),(φ2[S])=(1436441443614436)

    and

    (φ3[S])=(182168817282161728216).

    One can easily calculate and obtain that

    det(φ2(S))=105,det(φ2[S])=15120 and det(φ3[S])=2600640.

    Thus

    det(φ3[S])det(φ2(S))=24768Z and det(φ3[S])det(φ2[S])=172Z.

    In other words, we have det(φ2[S])|det(φ3[S]) and det(φ2(S))|det(φ3[S]).

    It is also remarked that the condition that f is multiplicative in Theorem 4.1 is necessary as the following example shows.

    Example 4.2. Letting f(x):=x+1, a:=1,b:=3 and S:={2,4,3} gives us that

    (f(S))=(332352224),(f[S])=(35755137134)

    and

    (f3(S))=(272782712588864),(f3[S])=(271253431251252197343219764).

    So we obtain that det(f(S))=16,det(f[S])=118,det(f3(S))=163072 and det(f3[S])=42578782. Thus

    det(f3(S))det(f(S))=10192Z,det(f3[S])det(f(S))=212893918Z and det(f3[S])det(f[S])=2128939159Z.

    So det(f(S))|det(f3(S)), det(f(S))|det(f3[S]) and det(f[S])|det(f3[S]).

    Subsequently, we explore the divisibility of determinants of the matrices associated to the integer-valued multiplicative function on the power set Sa. We present the second main result of this section as follows.

    Theorem 4.2. Let f be an integer-valued arithmetic function and let a and b be positive integers such that a|b. Let S consist of two coprime divisor chains with 1S. Then each of the following is true:

    (ⅰ). If f is multiplicative, then det(f(Sa))|det(f[Sa]).

    (ⅱ). If f is completely multiplicative, then we have det(f(Sa))|det(f(Sb)), det(f[Sa])|det(f[Sb]) and det(f(Sa))|det(f[Sb]).

    Moreover, there exist multiplicative functions f, positive integers a and b with a|b and b>a, and a set S consisting of two coprime divisor chains with 1S, such that det(f(Sa))det(f(Sb)), det(f[Sa])det(f[Sb]) and det(f(Sa))det(f[Sb]).

    Proof. We begin with the proof of the first part of Theorem 4.2.

    (ⅰ). Since S consists of two coprime divisor chains with 1S, the power set Sa consists of two coprime divisor chains with gcd(Sa)=1Sa. Furthermore, since f is multiplicative, one has either f(1)=0 or f(1)=1. If f(1)=0, then f is the zero function and so one has det(f(Sa))=det(f[Sa])=0. Thus det(f(Sa))|det(f[Sa]) as desired. Now let f(1)=1. Then by Lemma 3.1, we have

    (1)m+n1f(xan)f(yam)det(f(Sa))=(1)m+n1f(xan)f(yam)(f(xa1)f(ya1)1)(n1i=1(f(xai+1)f(xai)))(m1j=1(f(yaj+1)f(yaj)))=det(f[Sa])

    However, since f is integer valued, one has f(xan)f(yam)Z. Therefore the desired result det(f(Sa))|det(f[Sa]) follows. Part (ⅰ) is proved.

    (ⅱ). If f is complete multiplicative, then it is clear that f(xa)=fa(x) for any positive integers a and x. So one has

    (f(Sa))=(fa(S)),(f(Sb))=(fb(S)),(f[Sa])=(fa[S]) and (f[Sb])=(fb[S]).

    Since a|b and S consists of two coprime divisor chains with 1S, it then follows from Theorem 4.1 that det(fa(S))|det(fb(S)), det(fa[S])|det(fb[S]) and det(fa(S))|det(fb[S]). Thus the desired results det(f(Sa))|det(f(Sb)), det(f[Sa])|det(f[Sb]) and det(f(Sa))|det(f[Sb]) follow immediately. Part (ⅱ) is proved.

    Finally, we turn our attention to the proof of the second part of Theorem 4.2. Letting S:={2,4,3} and a:=2,b:=4 gives us that

    (S)=(221241113),(S2)=(4414161119),(S4)=(161611625611181)

    and

    [S]=(24644126123),[S2]=(416361616144361449),[S4]=(1625612962562562073612962073681).

    Therefore picking f=φ to be the Euler's totient function tells us that

    (f(S2))=(φ(S2))=(221281116),(f(S4))=(φ(S4))=(881812811154)

    and

    (f[S2])=(φ[S2])=(2812884812486),(f[S4])=(φ[S4])=(81284321281286912432691254).

    So one deduces that

    det(f(Sb))det(f(Sa))=det(φ(S4))det(φ(S2))=5172066=862011Z,
    det(f[Sb])det(f[Sa])=det(φ[S4])det(φ[S2])=3574886403168=124128011Z

    and

    det(f[Sb])det(f(Sa))=det(φ[S4])det(φ(S2))=35748864066=5958144011Z.

    So det(f(Sa))det(f(Sb)), det(f[Sa])det(f[Sb]) and det(f(Sa))det(f[Sb]) as desired.

    This concludes the proof of Theorem 4.2.

    Remark 4.3. (ⅰ). If S consists of at least three coprime divisor chains, then the divisibility result in Theorem 4.2 (i) may be false. For instance, letting S:={2,4,3,5} and a:=2 gives us that

    (φ(S2))=(22112811116111120) and (φ[S2])=(2812408848160124861204016012020).

    Hence

    det(φ[S2])det(φ(S2))=148320107Z.

    That is, det(φ(S2))|det(φ[S2]).

    On the other hand, the condition that f is multiplicative in Theorem 4.2 (i) is necessary. For example, let f(x):=x+1 and S:={2,4,3},a:=1. Then f is not multiplicative and

    det(f[S])det(f(S))=598Z.

    Hence det(f(S))|det(f[S]).

    (ⅱ). We remark that the condition a|b is not necessary for the divisibility result in Theorem 4.2 (ii). For example, letting f(x):=x,S:={2,6,5},a:=2 and b:=5 gives us that

    (S2)=(44143611125),(S5)=(323213277761113125)

    and

    [S2]=(436100363690010090025),[S5]=(3277761000007776777624300000100000243000003125).

    Then we compute and get that

    det((S5))det((S2))=244442Z,det([S5])det([S2])=659993400Z and det([S5])det((S2))=5939940600000Z.

    It follows immediately that det((S2))|det((S5)),det([S2])|det([S5]) and det((S2))|det([S5]).

    The authors would like to thank the anonymous referees for careful readings of the manuscript and helpful comments. S.F. Hong was supported partially by National Science Foundation of China Grant # 11771304.

    We declare that we have no conflict of interest.



    [1] Z. Yener, F. Ilhan, Z. Ilhan, Y. S. Saglam, Immunohistochemical detection of Mannheimia (Pasteurella) haemolytica antigens in goats with natural pneumonia, Vet. Res. Commun., 33 (2009), 305–313. https://doi.org/10.1007/s11259-008-9178-z doi: 10.1007/s11259-008-9178-z
    [2] D. M. West, A. N. Bruere, A. L. Ridler, The sheep: Health, disease & production: Written for veterinarians and farmers, Veterinary Continuing Education, Massey University, 2002.
    [3] G. Salah, A. R. Ferial, R. A. Mohamed, S. Ihab, Small ruminant breeds of Egypt, In: Characterization of small ruminant breeds in West Asia and North Africa, Aleppo: ICARDA, 2 (2005), 141–193.
    [4] R. L. Baker, G. D. Gray, Appropriate breeds and breeding schemes for sheep and goats in the tropics, Worm Control Small Ruminants Trop. Asia, 63 (2004), 63–95.
    [5] T. U. Obi, Clinical and epidemiological studies on PPR in sheep and goats in Southern Nigeria, Ph.D Thesis, Univ. Ibadan, 1984.
    [6] B. O. Emikpe, S. O. Akpavie, Clinicopathologic effects of peste des petit ruminant virus infection in West African dwarf goats, Small Ruminant Res., 95 (2011), 168–173. https://doi.org/10.1016/j.smallrumres.2010.09.009 doi: 10.1016/j.smallrumres.2010.09.009
    [7] M. Naveed, M. T. Javed, A. Khan, R. Kausar, Haematological and bacteriological studies in neonatal lambs with reference to neonatal lamb mortality, Pakistan Vet. J., 19 (1999), 127–131.
    [8] G. Ayelet, L. Yigezu, E. Gelaye, S. Tariku, K. Asmare, Epidemiologic and serologic investigation of multifactorial respiratory disease of sheep in the central highland of Ethiopia, Int. J. Appl. Res. Vet. Med., 2 (2004), 275–278.
    [9] Manual of diagnostic tests and vaccines for terrestrial animals, Paris: Office Intl Des Epizooties, 2008, 1092–1106.
    [10] K. A. Goodwin, R. Jackson, C. Brown, P. R. Davies, R. S. Morris, N. R. Perkins, Pneumonic lesions in lambs in New Zealand: Patterns of prevalence and effects on production, New Zeal. Vet. J., 52 (2004), 175–179. https://doi.org/10.1080/00480169.2004.36425 doi: 10.1080/00480169.2004.36425
    [11] Ministry of Environment, Water and Agriculture, 2022. Available from: https://www.mewa.gov.sa/en/Pages/default.aspx.
    [12] A. Melegaro, N. J. Gay, G. F. Medley, Estimating the transmission parameters of pneumococcal carriage in households, Epidemiol. Infect., 132 (2004), 433–441. https://doi.org/10.1017/S0950268804001980 doi: 10.1017/S0950268804001980
    [13] E. Joseph, Mathematical analysis of prevention and control strategies of pneumonia in adults and children, Diss. Univ. Dar es Salaam, Tanzania, 2012.
    [14] D. Ssebuliba, Mathematical modelling of the effectiveness of two training interventions on infectious diseases in Uganda, Ph.D Stellenbosch Univ., 2013.
    [15] K. O. Okosun, O. D. Makinde, Modelling the impact of drug resistance in malaria transmission and its optimal control analysis, Int. J. Phys. Sci., 6 (2011), 6479–6487. https://doi.org/10.5897/IJPS10.542 doi: 10.5897/IJPS10.542
    [16] K. O. Okosun, O. D. Makinde, On a drug-resistant malaria model with susceptible individuals without access to basic amenities, J. Biol. Phys., 38 (2012), 507–530. https://doi.org/10.1007/s10867-012-9269-5 doi: 10.1007/s10867-012-9269-5
    [17] K. O. Okosun, O. D. Makinde, Optimal control analysis of Malaria in the presence of nonlinear incidence rate, Appl. Comput. Math., 12 (2013), 20–32.
    [18] K. O. Okosun, O. D. Makinde, A co-infection model of malaria and cholera diseases with optimal control, Math. Biosci., 258 (2014), 19–32. https://doi.org/10.1016/j.mbs.2014.09.008 doi: 10.1016/j.mbs.2014.09.008
    [19] C. A. Okaka, J. Y. T. Mugisha, A. Manyonge, C. Ouma, Modelling the impact of misdiagnosis and treatment on the dynamics of malaria concurrent and co-infection with pneumonia, Appl. Math. Sci., 7 (2013), 6275–6296. https://doi.org/10.12988/ams.2013.39521 doi: 10.12988/ams.2013.39521
    [20] J. Ong'ala, J. Y. T Mugisha, P. Oleche, Mathematical model for pneumonia dynamics with carriers, Int. J. Math. Anal., 7 (2013), 2457–2473. https://doi.org/10.12988/ijma.2013.35109 doi: 10.12988/ijma.2013.35109
    [21] G. T. Tilahun, O. D. Makinde, D. Malonza, Modelling and optimal control of pneumonia disease with cost-effective strategies, J Biol Dyn., 11 (2017), 400–426. https://doi.org/10.1080/17513758.2017.1337245 doi: 10.1080/17513758.2017.1337245
    [22] G. T. Tilahun, O. D. Makinde, D. Malonza, Co-dynamics of pneumonia and typhoid fever diseases with cost effective optimal control analysis, Appl. Math. Comput., 316 (2018), 438–459. https://doi.org/10.1016/j.amc.2017.07.063 doi: 10.1016/j.amc.2017.07.063
    [23] A. Akgul, E. Karatas, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 023108. https://doi.org/10.1063/1.5084035 doi: 10.1063/1.5084035
    [24] M. H. Alshehri, F. Z. Duraihem, A. Ahmad, S. Saber, A Caputo (discretization) fractional-order model of glucose-insulin interaction: Numerical solution and comparisons with experimental data, J. Taibah Univ. Sci., 15 (2021), 26–36. https://doi.org/10.1080/16583655.2021.1872197 doi: 10.1080/16583655.2021.1872197
    [25] S. M. Al-Zahrani, F. E. I. Elsmih, K. S. Al-Zahrani, S. Saber, A fractional order SITR model for forecasting of transmission of COVID-19: Sensitivity statistical analysis, Malays. J. Math. Sci., in press.
    [26] M. H. Alshehri, S. Saber, F. Z. Duraihem, Dynamical analysis of fractional-order of IVGTT glucose–insulin interaction, Int. J. Nonlinear Sci. Numer. Simul., 2021. https://doi.org/10.1515/ijnsns-2020-0201 doi: 10.1515/ijnsns-2020-0201
    [27] A. Ahmad, S. Saber, Stability analysis and numerical simulations of the fractional COVID-19 pandemic model, Int. J. Nonlinear Sci. Numer. Simul., in press.
    [28] M. A. Dokuyucu, E. Celik, H. Bulut, H. M. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, Eur. Phys. J. Plus, 133 (2018), 92. https://doi.org/10.1140/epjp/i2018-11950-y doi: 10.1140/epjp/i2018-11950-y
    [29] M. A. Dokuyucu, H. Dutta, A fractional order model for Ebola virus with the new Caputo fractional derivative without singular kernel, Chaos, Solitons Fract., 134 (2020), 109717. https://doi.org/10.1016/j.chaos.2020.109717 doi: 10.1016/j.chaos.2020.109717
    [30] D. Baleanu, A. Fernandez, A. Akgül, On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2020), 1–13. https://doi.org/10.3390/math8030360 doi: 10.3390/math8030360
    [31] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361–404. https://doi.org/10.3934/mbe.2004.1.361 doi: 10.3934/mbe.2004.1.361
    [32] H. Delavari, D. Baleanu, J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dyn., 67 (2012), 2433–2439. https://doi.org/10.1007/s11071-011-0157-5 doi: 10.1007/s11071-011-0157-5
    [33] M. Caputo, Linear model of dissipation whose Q is almost frequency independent-Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [34] A. Al-Aklabi, A. W. Al-Khulaidi, A. Hussain, N. Al-Sagheer, Main vegetation types and plant species diversity along an altitudinal gradient of Al Baha region, Saudi Arabia, Saudi J. Biol. Sci., 23 (2016), 687–697. https://doi.org/10.1016/j.sjbs.2016.02.007 doi: 10.1016/j.sjbs.2016.02.007
    [35] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific Publishing, 2000. https://doi.org/10.1142/3779
    [36] M. H. Al-Smadi, G. N. Gumah, On the homotopy analysis method for fractional SEIR epidemic model, Res. J. Appl. Sci. Eng. Technol., 7 (2014), 3809–3820. http://dx.doi.org/10.19026/rjaset.7.738 doi: 10.19026/rjaset.7.738
    [37] H. Sherief, A. M. A. El-Sayed, S. Behiry, W. E. Raslan, Using fractional derivatives to generalize the Hodgkin-Huxley model, In: Fractional dynamics and control, Springer, 2012,275–282. https://doi.org/10.1007/978-1-4614-0457-6_23
    [38] M. Caputo, F. Mainardi, A new dissipation model based on memory mechanism, Pure Appl. Geophys., 91 (1971), 134–147. https://doi.org/10.1007/BF00879562 doi: 10.1007/BF00879562
    [39] M. Caputo, F. Mainardi, Linear models of dissipation in anelastic solids, La Rivista del Nuovo Cimento, 1 (1971), 161–198. https://doi.org/10.1007/BF02820620 doi: 10.1007/BF02820620
    [40] M. Caputo, Vibrations of an infinite viscoelastic layer with a dissipative memory, J. Acoust. Soc. Am., 56 (1974), 897–904. https://doi.org/10.1121/1.1903344 doi: 10.1121/1.1903344
    [41] H. Sherief, A. M. A. El-Sayed, A. M. Abd El-Latief, Fractional order theory of thermoelasticity, Int. J. Solids Struct., 47 (2010) 269–275. https://doi.org/10.1016/j.ijsolstr.2009.09.034 doi: 10.1016/j.ijsolstr.2009.09.034
    [42] W. E. Raslan, Application of fractional order theory of thermoelasticity to a 1D problem for a cylindrical cavity, Arch. Mech., 66 (2014), 257–267.
    [43] W. E. Raslan, Application of fractional order theory of thermoelasticity in a thick plate under axisymmetric temperature distribution, J. Therm. Stresses, 38 (2015), 733–743. https://doi.org/10.1080/01495739.2015.1040307 doi: 10.1080/01495739.2015.1040307
    [44] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishechenko, The mathematical theory of optimal processes, JohnWiley & Sons, New York, 1962.
    [45] A. Akgul, A novel method for a fractional derivative with non-local and nonsingular kernel, Chaos Soliton Fract., 114 (2018), 478–482. https://doi.org/10.1016/j.chaos.2018.07.032 doi: 10.1016/j.chaos.2018.07.032
    [46] A. Akgul, M. Modanli, Crank-Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana-Baleanu Caputo derivative, Chaos Soliton Fract., 127 (2019), 10–16. https://doi.org/10.1016/j.chaos.2019.06.011 doi: 10.1016/j.chaos.2019.06.011
    [47] I. Podlubny, Fractional differential equations, New York: Academic Press, 1998.
    [48] V. Daftardar-Gejji, H. Jafari, Analysis of a system of non autonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl., 328 (2007), 1026–1033. https://doi.org/10.1016/j.jmaa.2006.06.007 doi: 10.1016/j.jmaa.2006.06.007
    [49] W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726. https://doi.org/10.1016/j.jmaa.2006.10.040 doi: 10.1016/j.jmaa.2006.10.040
    [50] H. L. Li, L. Zhang, C. Hu, Y. L. Jiang, Z. Teng, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449. https://doi.org/10.1007/s12190-016-1017-8 doi: 10.1007/s12190-016-1017-8
    [51] C. Vargas-De-Leon, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75–85. https://doi.org/10.1016/j.cnsns.2014.12.013 doi: 10.1016/j.cnsns.2014.12.013
    [52] J. P. C. dos Santos, E. Monteiro, G. B. Vieira, Global stability of fractional SIR epidemic model, Proc. Ser. Braz. Soc. Appl. Comput. Math., 5 (2017), 1–7. https://doi.org/10.5540/03.2017.005.01.0019 doi: 10.5540/03.2017.005.01.0019
    [53] J. P. LaSalle, The stability of dynamics systems, In: CBMS-NSF regional conference series in applied mathematics, SIAM, Philadelphia, 1976. https://doi.org/10.1137/1.9781611970432
    [54] J. LaSalle, Some extensions of Liapunov's second method, IRE Trans. Circuit Theory, 7 (1960), 520–527. https://doi.org/10.1109/TCT.1960.1086720 doi: 10.1109/TCT.1960.1086720
    [55] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361–404. https://doi.org/10.3934/mbe.2004.1.361 doi: 10.3934/mbe.2004.1.361
    [56] A. Boukhouima, K. Hattaf, N. Yousfi, Dynamics of a fractional order HIV infection model with specific functional response and cure rate, Int. J. Differ. Equ., 2017 (2017), 8372140. https://doi.org/10.1155/2017/8372140 doi: 10.1155/2017/8372140
    [57] S. K. Choi, B. Kang, N. Koo, Stability for Caputo fractional differential systems, Abstr. Appl. Anal., 2014 (2014), 631419. https://doi.org/10.1155/2014/631419 doi: 10.1155/2014/631419
    [58] P. Van den Driessche, J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [59] S. Baba, O. D. Makinde, Optimal control of HIV/AIDS in the workplace in the presence of careless individuals, Comput. Math. Methods Med., 2014 (2014), 1–19. https://doi.org/10.1155/2014/831506 doi: 10.1155/2014/831506
    [60] W. H. Fleming, R. W. Rishel, Deterministic and stochastic optimal control, New york: Springer, 1975. https://doi.org/10.1007/978-1-4612-6380-7
    [61] D. L. Lukes, Differential equations: Classical to controlled, Academic Press, 1982.
    [62] W. H. Fleming, R. W. Rishel, Deterministic and stochastic optimal control (stochastic modelling and applied probability, 1), Springer, 1975.
    [63] Z. M. Odibat, S. Momani, An algorithm for the numerical solution of differential equations of fractional order, J. Appl. Math. Inform., 26 (2008), 15–27.
    [64] Z. Odibat, N. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102 doi: 10.1016/j.amc.2006.07.102
  • This article has been cited by:

    1. S. M. Al-Zahrani, F. E. I. Elsmih, K. S. Al-Zahrani, S. Saber, A Fractional Order SITR Model for Forecasting of Transmission of COVID-19: Sensitivity Statistical Analysis, 2022, 16, 1823-8343, 517, 10.47836/mjms.16.3.08
    2. Ghada A. Ahmed, On the fractional-order glucose-insulin interaction, 2023, 8, 2473-6988, 15824, 10.3934/math.2023808
    3. Najat Almutairi, Sayed Saber, Application of a time-fractal fractional derivative with a power-law kernel to the Burke-Shaw system based on Newton's interpolation polynomials, 2024, 12, 22150161, 102510, 10.1016/j.mex.2023.102510
    4. N.S. Tibane, O.D. Makinde, R.L. Monaledi, Dynamics of Covid-19 disease with its economic implications and optimal control: An exploitation of variational iteration method, 2023, 42, 23529148, 101356, 10.1016/j.imu.2023.101356
    5. Khalid I.A. Ahmed, Haroon D.S. Adam, Najat Almutairi, Sayed Saber, Analytical solutions for a class of variable-order fractional Liu system under time-dependent variable coefficients, 2024, 56, 22113797, 107311, 10.1016/j.rinp.2023.107311
    6. Shewafera Wondimagegnhu Teklu, Graciela Russomando, Investigating the Effects of Intervention Strategies on Pneumonia and HIV/AIDS Coinfection Model, 2023, 2023, 2314-6133, 10.1155/2023/5778209
    7. Najat Almutairi, Sayed Saber, Hijaz Ahmad, The fractal-fractional Atangana-Baleanu operator for pneumonia disease: stability, statistical and numerical analyses, 2023, 8, 2473-6988, 29382, 10.3934/math.20231504
    8. Khalid I.A. Ahmed, Haroon D.S. Adam, M.Y. Youssif, Sayed Saber, Different strategies for diabetes by mathematical modeling: Modified Minimal Model, 2023, 80, 11100168, 74, 10.1016/j.aej.2023.07.050
    9. Khalid I.A. Ahmed, Haroon D.S. Adam, M.Y. Youssif, Sayed Saber, Different strategies for diabetes by mathematical modeling: Applications of fractal–fractional derivatives in the sense of Atangana–Baleanu, 2023, 52, 22113797, 106892, 10.1016/j.rinp.2023.106892
    10. Najat Almutairi, Sayed Saber, Existence of chaos and the approximate solution of the Lorenz–Lü–Chen system with the Caputo fractional operator, 2024, 14, 2158-3226, 10.1063/5.0185906
    11. Najat Almutairi, Sayed Saber, Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives, 2023, 8, 2473-6988, 25863, 10.3934/math.20231319
    12. Najat Almutairi, Sayed Saber, On chaos control of nonlinear fractional Newton-Leipnik system via fractional Caputo-Fabrizio derivatives, 2023, 13, 2045-2322, 10.1038/s41598-023-49541-z
    13. Muflih Alhazmi, Comparing the Numerical Solution of Fractional Glucose–Insulin Systems Using Generalized Euler Method in Sense of Caputo, Caputo–Fabrizio and Atangana–Baleanu, 2024, 16, 2073-8994, 919, 10.3390/sym16070919
    14. Shewafera Wondimagegnhu Teklu, Birhanu Baye Terefe, Dejen Ketema Mamo, Yohannes Fissha Abebaw, Optimal control strategies on HIV/AIDS and pneumonia co-infection with mathematical modelling approach, 2024, 18, 1751-3758, 10.1080/17513758.2023.2288873
    15. Salem Mubarak Alzahrani, Statistical methods for the computation and parameter estimation of a fractional SIRC model with Salmonella infection, 2024, 10, 24058440, e30885, 10.1016/j.heliyon.2024.e30885
    16. Shewafera Wondimagegnhu Teklu, Belela Samuel Kotola, Insight into the treatment strategy on pneumonia transmission with asymptotic carrier stage using fractional order modeling approach, 2024, 5, 26669900, 100134, 10.1016/j.cmpbup.2024.100134
    17. Isa Abdullahi Baba, Musbahu Aminu Sani, Fathalla A. Rihan, Evren Hincal, Modeling the impact of vaccination efficacy and awareness programs on the dynamics of infectious diseases, 2024, 1598-5865, 10.1007/s12190-024-02297-9
    18. Mohamed A. Abdoon, Rania Saadeh, Mohammed Berir, Dalal Khalid Almutairi, 2025, 9780443300127, 157, 10.1016/B978-0-44-330012-7.00019-9
    19. Mohammed Althubyani, Sayed Saber, Hyers–Ulam Stability of Fractal–Fractional Computer Virus Models with the Atangana–Baleanu Operator, 2025, 9, 2504-3110, 158, 10.3390/fractalfract9030158
    20. Sayed Saber, Safa M. Mirgani, Analyzing fractional glucose-insulin dynamics using Laplace residual power series methods via the Caputo operator: stability and chaotic behavior, 2025, 14, 2314-8543, 10.1186/s43088-025-00608-y
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3175) PDF downloads(235) Cited by(20)

Figures and Tables

Figures(10)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog