An appropriate mathematical model for describing the Zika virus transmission with nonlinear general incidence rate was proposed. The basic reproduction number $ \mathcal{R}_0 $ was calculated using the next generation matrix method. Analysis of the local and the global stability of the equilibrium points was detailed using Jacobian linearisation method and Lyapunov theory, respectively. We proved that the disease-free equilibrium is locally and globally asymptotically stable when $ \mathcal{R}_0 $ is small than 1, and the infected equilibrium point is locally and globally asymptotically stable when $ \mathcal{R}_0 $ is greater than 1. The overall sensitivity analysis is based on statistical tools. This method consists of varying the parameters of the model to study one by one and then observe the effect of this variation on the model output. Sensitivity indices quantifying the influence of parameters on the output, always depend on the sample list of parameters. Later, we used optimal control to examine the effect of treatment where the purpose is to minimize the number of infected individuals with optimal treatment cost by applying Pontryagin's maximum principle. Therefore, we formulated an optimal control problem using the most parameter that influences the model output as a control parameter. The existence of the solution was proved and characterized using adjointt variables. Finally, a numerical scheme was applied to solve the coupled systems. Obtained results are validated numerically.
Citation: Ahmed Alshehri, Miled El Hajji. Mathematical study for Zika virus transmission with general incidence rate[J]. AIMS Mathematics, 2022, 7(4): 7117-7142. doi: 10.3934/math.2022397
An appropriate mathematical model for describing the Zika virus transmission with nonlinear general incidence rate was proposed. The basic reproduction number $ \mathcal{R}_0 $ was calculated using the next generation matrix method. Analysis of the local and the global stability of the equilibrium points was detailed using Jacobian linearisation method and Lyapunov theory, respectively. We proved that the disease-free equilibrium is locally and globally asymptotically stable when $ \mathcal{R}_0 $ is small than 1, and the infected equilibrium point is locally and globally asymptotically stable when $ \mathcal{R}_0 $ is greater than 1. The overall sensitivity analysis is based on statistical tools. This method consists of varying the parameters of the model to study one by one and then observe the effect of this variation on the model output. Sensitivity indices quantifying the influence of parameters on the output, always depend on the sample list of parameters. Later, we used optimal control to examine the effect of treatment where the purpose is to minimize the number of infected individuals with optimal treatment cost by applying Pontryagin's maximum principle. Therefore, we formulated an optimal control problem using the most parameter that influences the model output as a control parameter. The existence of the solution was proved and characterized using adjointt variables. Finally, a numerical scheme was applied to solve the coupled systems. Obtained results are validated numerically.
[1] | E. B. Hayes, Zika virus outside Africa, Emerg. Infect. Dis., 15 (2009), 1347–1350. https://doi.org/10.3201/eid1509.090442 doi: 10.3201/eid1509.090442 |
[2] | M. R. Duffy, T. H. Chen, W. T. Hancock, A. M. Powers, J. L. Kool, R. S. Lanciotti, et al., Zika virus outbreak on Yap Island, Federated States of Micronesia, N. Engl. J. Med., 360 (2009), 2536–2543. https://doi.org/10.1056/NEJMoa0805715 doi: 10.1056/NEJMoa0805715 |
[3] | V. M. Cao-Lormeau, C. Roche, A. Teissier, E. Robin, A. L. Berry, H. P. Mallet, et al., Zika virus, French polynesia, South pacific, 2013, Emerg. Infect. Dis., 20 (2014), 1085–1086. https://doi.org/10.3201/eid2006.140138 doi: 10.3201/eid2006.140138 |
[4] | A. Roth, A. Mercier, C. Lepers, D. Hoy, S. Duituturaga, E. Benyon, et al. Concurrent outbreaks of dengue, chikungunya and Zika virus infections-an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014, Euro. Surveill., 2014. https: //doi.org/10.2807/1560-7917.ES2014.19.41.20929 |
[5] | G. S. Campos, A. C. Bandeira, S. I. Sardi, Zika virus outbreak, Bahia, Brazil, Emerg. Infect. Dis., 21 (2015), 1885–1886. https://doi.org/10.3201/eid2110.150847 doi: 10.3201/eid2110.150847 |
[6] | D. Musso, Zika virus transmission from French Polynesia to Brazil, Emerg. Infect. Dis., 21 (2015), 1887. https://doi.org/10.3201/eid2110.151125 doi: 10.3201/eid2110.151125 |
[7] | N. Gupta, S. Srivastava, A. Jain, U. Chaturvedi, Dengue in india, Indian J. medical research, 136 (2012), 3:373–390. |
[8] | L. Laura, A. K. Supriatna, M. S. Khumaeroh, N. Anggriani, Biological and mechanical transmission models of dengue fever, Commun. Biomath. Sci., 2 (2019), 12–22. https://doi.org/10.5614/cbms.2019.2.1.2 doi: 10.5614/cbms.2019.2.1.2 |
[9] | E. Camacho, M. Paternina-Gomez, P. J. Blanco, J. E. Osorio, M. T. Aliota, Detection of autochthonous Zika virus transmission in Sincelejo, Colombia, Emerg. Infect. Dis., 22 (2016), 927–929. https://doi.org/10.3201/eid2205.160023 doi: 10.3201/eid2205.160023 |
[10] | H. Nishiura, R. Kinoshita, K. Mizumoto, Y. Yasuda, K. Nah, Transmission potential of Zika virus infection in the South Pacific, Int. J. Infect. Dis., 45 (2016), 95–97. https://doi.org/10.1016/j.ijid.2016.02.017 doi: 10.1016/j.ijid.2016.02.017 |
[11] | J. C. Koella, R. Antia, Epidemiological models for the spread of anti-malarial resistance, Malar. J., 2 (2003). https://doi.org/10.1186/1475-2875-2-3 |
[12] | L. Esteva, C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998) 2:131–151, 1998. https://doi.org/10.1016/s0025-5564(98)10003-2 doi: 10.1016/s0025-5564(98)10003-2 |
[13] | L. Esteva, C. Vargas, A model for dengue disease with variable human population, J. Math. Biol., 38 (1999), 220–240. https://doi.org/10.1007/s002850050147 doi: 10.1007/s002850050147 |
[14] | L. Esteva, C. Vargas, Coexistence of different serotypes of dengue virus, J. Math. Biol., 46 (2003), 31–47. https://doi.org/10.1007/s00285-002-0168-4 doi: 10.1007/s00285-002-0168-4 |
[15] | I. I. Bogoch, O. J. Brady, M. U. Kraemer, M. German, M. I. Creatore, M. A. Kulkarni, et al., Anticipating the international spread of Zika virus from Brazil, Lancet, 387 (2016), 335–336. https://doi.org/10.1016/S0140-6736(16)00080-5 doi: 10.1016/S0140-6736(16)00080-5 |
[16] | L. Schuler-Faccini, E. M. Ribeiro, I. M. L. Feitosa, D. D. G. Horovitz, D. P. Cavalcanti, A. Pessoa, et al., Possible association between Zika virus infection and microcephaly-Brazil, 2015, MMWR Morb. Mortal Wkly Rep., 65 (2016), 59–62. https://doi.org/10.15585/mmwr.mm6503e2 doi: 10.15585/mmwr.mm6503e2 |
[17] | E. Oehler, L. Watrin, P. Larre, I. Leparc-Goffart, S. Lastere, F. Valour, et al., Zika virus infection complicated by Guillain-Barre syndrome-–case report, French Polynesia, December 2013, Euro Surveill., 2014. https://doi.org/10.2807/1560-7917.ES2014.19.9.20720 |
[18] | S. Alsahafi, S. Woodcock, Mathematical Study for Chikungunya Virus with Nonlinear General Incidence Rate, Mathematics, 9 (2021), 2186. https://doi.org/10.3390/math9182186 doi: 10.3390/math9182186 |
[19] | S. Alsahafi, S. Woodcock, Mutual inhibition in presence of a virus in continuous culture, Math. Biosci. Eng., 18 (2021), 3258–3273. https://doi.org/10.3934/mbe.2021162 doi: 10.3934/mbe.2021162 |
[20] | S. Alsahafi, S. Woodcock, Local Analysis for a Mutual Inhibition in Presence of Two Viruses in a Chemostat, Nonlinear Dyn. Syst. Theory, 21 (2021), 337–359. |
[21] | N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272–1296. https://doi.org/10.1007/s11538-008-9299-0 doi: 10.1007/s11538-008-9299-0 |
[22] | M. El Hajji, A. H. Albargi, A mathematical investigation of an "SVEIR" epidemic model for the Measles transmission, Math. Biosc. Eng., 19 (2022), 2853–2875. https://doi.org/10.3934/mbe.2022131 doi: 10.3934/mbe.2022131 |
[23] | M. El Hajji, Modelling and optimal control for Chikungunya disease, Theory Biosci., 140 (2021), 27–44. https://doi.org/10.1007/s12064-020-00324-4 doi: 10.1007/s12064-020-00324-4 |
[24] | M. El Hajji, A. Zaghdani, S. Sayari, Mathematical analysis and optimal control for Chikungunya virus with two routes of infection with nonlinear incidence rate, Int. J. Biomath., (2021), 2150088. https://doi.org/10.1142/S1793524521500881 |
[25] | M. El Hajji, S. Sayari, A. Zaghdani, Mathematical analysis of an "SIR" epidemic model in a continuous reactor-deterministic and probabilistic approaches, J. Korean Math. Soc., 58 (2021), 45–67. https://doi.org/10.4134/JKMS.j190788 doi: 10.4134/JKMS.j190788 |
[26] | A. K. Chakraborty, M. A. Haque, M. A. Islam, Mathematical modelling and analysis of dengue transmission in Bangladesh with saturated incidence rate and constant treatment, Commun. Biomath. Sci., 3 (2020), 101–113. https://doi.org/10.5614/cbms.2020.3.2.2 doi: 10.5614/cbms.2020.3.2.2 |
[27] | N. K. Goswami, B. Shanmukha, Stability and optimal control analysis of Zika virus with saturated incidence rate, Malaya J. Matematik, 8 (2020), 331–342. https://doi.org/10.26637/MJM0802/0004 doi: 10.26637/MJM0802/0004 |
[28] | E. Bonyah, K. O. Okosun, Mathematical modeling of Zika viru, Asian Pac. J. Trop. Dis., 6 (2016), 673–679. https://doi.org/10.1016/S2222-1808(16)61108-8 doi: 10.1016/S2222-1808(16)61108-8 |
[29] | Y. Dumont, F. Chiroleu, Vector control for the Chikungunya disease, Math. Biosci. Eng., 7 (2010), 313–345. https://doi.org/10.3934/mbe.2010.7.313 doi: 10.3934/mbe.2010.7.313 |
[30] | Y. Dumont, F. Chiroleu, C. Domerg, On a temporal model for the Chikungunya disease: Modeling, theory and numerics, Math. Biosc., 213 (2008), 80–91. https://doi.org/10.1016/j.mbs.2008.02.008 doi: 10.1016/j.mbs.2008.02.008 |
[31] | M. El Hajji, Boundedness and asymptotic stability of nonlinear Volterra integro-differential equations using Lyapunov functional, J. King Saud Univ. Sci., 31 (2019), 1516–1521. https://doi.org/10.1016/j.jksus.2018.11.012 doi: 10.1016/j.jksus.2018.11.012 |
[32] | Z. Feng, V. Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Bio., 35 (1997), 523–544. https://doi.org/10.1007/s002850050064 doi: 10.1007/s002850050064 |
[33] | A. Tran, M. Raffy, On the dynamics of dengue epidemics from large-scale information, Theor. Popul. Biol., 69 (2006), 3–12. https://doi.org/10.1016/j.tpb.2005.06.008 doi: 10.1016/j.tpb.2005.06.008 |
[34] | P. Agarwal, J. J. Nieto, M. Ruzhansky, D. F. M. Torres, Analysis of Infectious Disease Problems (Covid-19) and Their Global Impact, Infosys Science Foundation Series. Springer, Singapore, 2021. |
[35] | M. Derouich, A. Boutayeb, E. H. Twizell, A model of dengue fever, Bio-Medical Eng., 2 (2003), 4. https://doi.org/10.1186/1475-925x-2-4 doi: 10.1186/1475-925x-2-4 |
[36] | M. Derouich, A. Boutayeb, Dengue fever: Mathematical modelling and computer simulation, App. Math. Comput., 177 (2006), 528–544. https://doi.org/10.1016/j.amc.2005.11.031 doi: 10.1016/j.amc.2005.11.031 |
[37] | H. M. Yang, C. P. Ferreira, Assessing the effects of vector control on dengue transmission, App. Math. Comput., 198 (2008), 401–413. https://doi.org/10.1016/j.amc.2007.08.046 doi: 10.1016/j.amc.2007.08.046 |
[38] | Y. Wang, J. Cao, Global stability of general cholera models with nonlinear incidence and removal rates, J. Franklin Institute, 352 (2015), 2464–2485. https://doi.org/10.1016/j.jfranklin.2015.03.030 doi: 10.1016/j.jfranklin.2015.03.030 |
[39] | J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, 2Eds, Biomath. Texts, 19 (1980), Springer, Berlin. https://link.springer.com/book/10.1007/b98869 |
[40] | P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6 |
[41] | O. Diekmann, J. Heesterbeek, On the Definition and the computation of the basic reproduction ratio $\mathcal{R}_0$ in models for infectious diseases in heterogeneous populations, J. Math. Bio., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324 |
[42] | J. P. LaSalle, The Stability of Dynamical Systems, SIAM, 1976. https://doi.org/10.1137/1.9781611970432 |
[43] | M. El Hajji, How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat, Int. J. Biomath., 11 (2018), 1850111. https://doi.org/10.1142/S1793524518501115 doi: 10.1142/S1793524518501115 |
[44] | M. El Hajji, N. Chorfi, M. Jleli, Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat, Electron. J. Diff. Eqns., 2017 (2017), 1–13. http://ejde.math.txstate.edu |
[45] | M. El Hajji, N. Chorfi, M. Jleli, Mathematical model for a membrane bioreactor process, Electron. J. Diff. Eqns., 2015 (2015), 1–7. http://ejde.math.txstate.edu |
[46] | H. S. Rodrigues, M. Teresa, T. Monteiro, D. F. M. Torres, Sensitivity Analysis in a Dengue Epidemiological Model, Hindawi Publishing Corporation Conference Papers in Mathematics, 2013, 721406. https://doi.org/10.1155/2013/721406 |
[47] | C. J. Silva, D. F. M. Torres, Optimal control for a tuberculosis model with reinfection and post-exposure interventions, Math. Biosc., 244 (2013), 154–164. https://doi.org/10.1016/j.mbs.2013.05.005 doi: 10.1016/j.mbs.2013.05.005 |
[48] | W. H. Fleming, R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer Verlag, New York, 1975. https://link.springer.com/book/10.1007/978-1-4612-6380-7 |
[49] | S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall, 2007. |
[50] | L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, Wiley, New York, 1962. |
[51] | Y. Wang, J. D. Cao, Final size of network epidemic models: properties and connections, Sci. China In. Sci., 64 (2021), 179201. https://doi.org/10.1007/s11432-019-2656-2 doi: 10.1007/s11432-019-2656-2 |