Research article

Dynamics in a delayed rumor propagation model with logistic growth and saturation incidence

  • Received: 10 November 2023 Revised: 13 January 2024 Accepted: 18 January 2024 Published: 23 January 2024
  • MSC : 34A34, 34D05, 34D23

  • This paper studies a delayed rumor propagation model with logistic growth and saturation incidence. The next generation matrix method, some inequality techniques, the Lyapunov-LaSalle invariance principle, and the Lyapunov method are used in this paper. Our results indicate that if the basic regeneration number (which is analogous to the basic reproduction number in disease transmission models) is less than 1, the rumor-free equilibrium point (which is analogous to the disease-free equilibrium point in disease transmission models) is globally stable. If the basic regeneration number is greater than 1, then the rumor is permanent, and some sufficient conditions are obtained for local and global asymptotic stability of the rumor prevailing equilibrium point (which is analogous to the endemic equilibrium point in disease transmission models). Finally, three examples with numerical simulations are presented to illustrate the obtained theoretical results.

    Citation: Rongrong Yin, Ahmadjan Muhammadhaji. Dynamics in a delayed rumor propagation model with logistic growth and saturation incidence[J]. AIMS Mathematics, 2024, 9(2): 4962-4989. doi: 10.3934/math.2024241

    Related Papers:

  • This paper studies a delayed rumor propagation model with logistic growth and saturation incidence. The next generation matrix method, some inequality techniques, the Lyapunov-LaSalle invariance principle, and the Lyapunov method are used in this paper. Our results indicate that if the basic regeneration number (which is analogous to the basic reproduction number in disease transmission models) is less than 1, the rumor-free equilibrium point (which is analogous to the disease-free equilibrium point in disease transmission models) is globally stable. If the basic regeneration number is greater than 1, then the rumor is permanent, and some sufficient conditions are obtained for local and global asymptotic stability of the rumor prevailing equilibrium point (which is analogous to the endemic equilibrium point in disease transmission models). Finally, three examples with numerical simulations are presented to illustrate the obtained theoretical results.



    加载中


    [1] L. Zhu, M. Liu, Y. Li, The dynamics analysis of a rumor propagation model in online social networks, Phys. A, 520 (2019), 118–137. https://doi.org/10.1016/j.physa.2019.01.013 doi: 10.1016/j.physa.2019.01.013
    [2] D. J. Daley, D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118. https://doi.org/10.1038/2041118a0 doi: 10.1038/2041118a0
    [3] D. P. Maki, M. Thompson, Mathematical models and applications: with emphasis on the social, life, and management sciences, Prentice-Hall: Englewood Cliffs, 1973.
    [4] Y. Q. Wang, X. Y. Yang, Y. L. Han, X. A. Wang, Rumor spreading model with trust mechanism in complex social networks, Commun. Theor. Phys., 59 (2013), 510–516.
    [5] H. Zhao, J. Jiang, R. Xu, Y. Yang, SIRS model of passengers' panic propagation under self-organization circumstance in the subway emergency, Math. Probl. Eng., 2014 (2014), 608315. https://doi.org/10.1155/2014/608315 doi: 10.1155/2014/608315
    [6] W. Zhang, H. Deng, X. Li, H. Liu, Dynamics of the rumor-spreading model with control mechanism in complex network, J. Math., 2022 (2022), 5700374. https://doi.org/10.1155/2022/5700374 doi: 10.1155/2022/5700374
    [7] Q. Liu, T. Li, M. Sun, The analysis of an $SEIR$ rumor propagation model on heterogeneous network, Phys. A, 469 (2017), 372–380. https://doi.org/10.1016/j.physa.2016.11.067 doi: 10.1016/j.physa.2016.11.067
    [8] S. Chen, H. Jiang, L. Li, J. Li, Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks, Chaos Solitons Fract., 140 (2020), 110206. https://doi.org/10.1016/j.chaos.2020.110206 doi: 10.1016/j.chaos.2020.110206
    [9] M. Ghosh, S. Das, P. Das, Dynamics and control of delayed rumor propagation through social networks, J. Appl. Math. Comput., 68 (2022), 3011–3040. https://doi.org/10.1007/s12190-021-01643-5 doi: 10.1007/s12190-021-01643-5
    [10] A. Misra, A. Sharma, J. Shukla, Stability analysis and optimal control of an epidemic model with awareness programs by media, Biosystems, 138 (2015), 53–62. https://doi.org/10.1016/j.biosystems.2015.11.002 doi: 10.1016/j.biosystems.2015.11.002
    [11] G. Chen, ILSCR rumor spreading model to discuss the control of rumor spreading in emergency, Phys. A, 522 (2019), 88–97. https://doi.org/10.1016/j.physa.2018.11.068 doi: 10.1016/j.physa.2018.11.068
    [12] L. Zhu, B. Wang, Stability analysis of a SAIR rumor spreading model with control strategies in online social networks, Inf. Sci., 526 (2020), 1–19. https://doi.org/10.1016/j.ins.2020.03.076 doi: 10.1016/j.ins.2020.03.076
    [13] K. Kandhway, J. Kuri, Optimal control of information epidemics modeled as Maki Thompson rumors, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 4135–4147. https://doi.org/10.1016/j.cnsns.2014.04.022 doi: 10.1016/j.cnsns.2014.04.022
    [14] A. E. Bhih, R. Ghazzali, S. B. Rhila, M. Rachik, A. E. A. Laaroussi, A discrete mathematical modeling and optimal control of the rumor propagation in online social network, Discrete Dyn. Nat. Soc., 2020 (2020), 4386476. https://doi.org/10.1155/2020/4386476 doi: 10.1155/2020/4386476
    [15] K. Kawachi, Deterministic models for rumor transmission, Nonlinear Anal., 9 (2008), 1989–2028. https://doi.org/10.1016/j.nonrwa.2007.06.004 doi: 10.1016/j.nonrwa.2007.06.004
    [16] V. Giorno, S. Spina, Rumor spreading models with random denials, Phys. A, 461 (2016), 569–576. https://doi.org/10.1016/j.physa.2016.06.070 doi: 10.1016/j.physa.2016.06.070
    [17] L. A. Huo, Y. F. Dong, T. T. Lin, Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise, Chin. Phys. B, 30 (2021), 080201. https://doi.org/10.1088/1674-1056/ac0423 doi: 10.1088/1674-1056/ac0423
    [18] Y. Zhang, J. Zhu, A. Din, X. Ma, Dynamics of a stochastic epidemic-like rumor propagation model with generalized nonlinear incidence and time delay, Phys. Scr., 98 (2023), 045232. https://doi.org/10.1088/1402-4896/acc558 doi: 10.1088/1402-4896/acc558
    [19] T. Zhang, Z. Teng, Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence, Chaos Solitons Fract., 37 (2008), 1456–1468. https://doi.org/10.1016/j.chaos.2006.10.041 doi: 10.1016/j.chaos.2006.10.041
    [20] K. L. Cooke, P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240–260. https://doi.org/10.1007/s002850050051 doi: 10.1007/s002850050051
    [21] P. van den Driessche, J. Watmough, Further notes on the basic reproduction number, Springer, 1945. https://doi.org/10.1007/978-3-540-78911-6_6
    [22] W. Pan, W. Yan, Y. Hu, R. He, L. Wu, Dynamic analysis of a SIDRW rumor propagation model considering the effect of media reports and rumor refuters, Nonlinear Dyn., 111 (2023), 3925–3936. https://doi.org/10.1007/s11071-022-07947-w doi: 10.1007/s11071-022-07947-w
    [23] L. Huo, L. Wang, X. Zhao, Stability analysis and optimal control of a rumor spreading model with media report, Phys. A, 517 (2019), 551–562. https://doi.org/10.1016/j.physa.2018.11.047 doi: 10.1016/j.physa.2018.11.047
    [24] Z. He, L. Chen, C. Li, Effective government communication and government credibility in the perspective of public emergencies: a new analysis framework, Zhejiang Soc. Sci., 4 (2014), 40–46. https://doi.org/10.14167/j.zjss.2014.04.010 doi: 10.14167/j.zjss.2014.04.010
    [25] G. Zaman, Y. H. Kang, I. H. Jung, Stability analysis and optimal vaccination of an $SIR$ epidemic model, Biosystems, 93 (2008), 240–249. https://doi.org/10.1016/j.biosystems.2008.05.004 doi: 10.1016/j.biosystems.2008.05.004
    [26] A. Michel, Deterministic and stochastic optimal control, IEEE Trans. Autom. Control, 22 (1977), 997–998. https://doi.org/10.1109/TAC.1977.1101636 doi: 10.1109/TAC.1977.1101636
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(819) PDF downloads(74) Cited by(1)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog