Rumor spreading on social media platforms can significantly impact public opinion and decision-making. In this paper, we proposed an innovative ignorant-spreader-expositor-hibernator-remover (ISEHR) rumor-spreading model with multivariate gatekeepers. Specifically, by analyzing the model's dynamics, we identified the critical threshold that determined the persistence or extinction of rumor spreading. Moreover, we applied the Routh-Hurwitz judgment, Lyapunov theory, and LaSalle's invariance principle to investigate the existence and stability of the rumor-free/rumor equilibrium points. Furthermore, we introduced the optimal control to alleviate rumor spreading with the multivariate gatekeeper mechanism. Finally, extensive numerical simulations validated our theoretical findings, providing insights into the complex dynamics of rumor spreading and the effectiveness of the proposed control measures. Our research contributes to a deeper understanding of rumor spreading on social networks, offering valuable implications for the development of effective strategies to combat rumor.
Citation: Yanchao Liu, Pengzhou Zhang, Deyu Li, Junpeng Gong. Dynamic analysis and optimum control of a rumor spreading model with multivariate gatekeepers[J]. AIMS Mathematics, 2024, 9(11): 31658-31678. doi: 10.3934/math.20241522
Rumor spreading on social media platforms can significantly impact public opinion and decision-making. In this paper, we proposed an innovative ignorant-spreader-expositor-hibernator-remover (ISEHR) rumor-spreading model with multivariate gatekeepers. Specifically, by analyzing the model's dynamics, we identified the critical threshold that determined the persistence or extinction of rumor spreading. Moreover, we applied the Routh-Hurwitz judgment, Lyapunov theory, and LaSalle's invariance principle to investigate the existence and stability of the rumor-free/rumor equilibrium points. Furthermore, we introduced the optimal control to alleviate rumor spreading with the multivariate gatekeeper mechanism. Finally, extensive numerical simulations validated our theoretical findings, providing insights into the complex dynamics of rumor spreading and the effectiveness of the proposed control measures. Our research contributes to a deeper understanding of rumor spreading on social networks, offering valuable implications for the development of effective strategies to combat rumor.
[1] | L. H. Zhu, B. X. Wang, Stability analysis of a SAIR rumor spreading model with control strategies in online social networks, Inform. Sciences, 526 (2020), 1–19. https://doi.org/10.1016/j.ins.2020.03.076 doi: 10.1016/j.ins.2020.03.076 |
[2] | Y. C. Liu, P. Z. Zhang, L. Shi, J. P. Gong, A survey of information dissemination model, datasets, and insight, Mathematics, 11 (2023), 3707. https://doi.org/10.3390/math11173707 doi: 10.3390/math11173707 |
[3] | S. Z. Yu, Z. Y. Yu, H. J. Jiang, S. Yang, The dynamics and control of 2i2sr rumor spreading models in multilingual online social networks, Inform. Sciences, 581 (2021), 18–41. https://doi.org/10.1016/j.ins.2021.08.096 doi: 10.1016/j.ins.2021.08.096 |
[4] | G. Y. Jiang, S. P. Li, M. L. Li, Dynamic rumor spreading of public opinion reversal on weibo based on a two-stage SPNR model, Physica A, 558 (2020), 125005. https://doi.org/10.1016/j.physa.2020.125005 doi: 10.1016/j.physa.2020.125005 |
[5] | M. Ghosh, P. Das, P. Das, A comparative study of deterministic and stochastic dynamics of rumor propagation model with counter-rumor spreader, Nonlinear Dyn., 111 (2023), 16875–16894. https://doi.org/10.1007/s11071-023-08768-1 doi: 10.1007/s11071-023-08768-1 |
[6] | J. Ding, N. Gul, G. Liu, T. Saeed, Dynamical aspects of a delayed computer viruses model with horizontal and vertical dissemination over internet, Fractals, 31 (2023), 2340092. https://doi.org/10.1142/S0218348X23400923 doi: 10.1142/S0218348X23400923 |
[7] | M. U. Rahman, G. Alhawael, Y. Karaca, Multicompartmental analysis of middle eastern respiratory syndrome coronavirus model under fractional operator with next-generation matrix methods, Fractals, 31 (2023), 2340093. https://doi.org/10.1142/S0218348X23400935 doi: 10.1142/S0218348X23400935 |
[8] | D. Bernoulli, Essai d'une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l'inoculation pour la prévenir, Méin. de I'Acad. Roy. des Sciences de I'Année, 98 (1760), 11145. |
[9] | A. Raza, A. Ahmadian, M. Rafiq, M. C. Ang, S. Salahshour, M. Pakdaman, The impact of delay strategies on the dynamics of coronavirus pandemic model with nonlinear incidence rate, Fractals, 30 (2022), 2240121. https://doi.org/10.1142/S0218348X22401211 doi: 10.1142/S0218348X22401211 |
[10] | H. Alqahtani, Q. Badshah, G. U. Rahman, D. Baleanu, S. Sakhi, Threshold dynamics bifurcation analysis of the epidemic model of mers-CoV, Fractals, 31 (2023), 2340167. https://doi.org/10.1142/S0218348X23401679 doi: 10.1142/S0218348X23401679 |
[11] | Y. M. Guo, T. T. Li, Modeling the competitive transmission of the Omicron strain and Delta strain of COVID-19, J. Math. Anal. Appl., 526 (2023), 127283. https://doi.org/10.1016/j.jmaa.2023.127283 doi: 10.1016/j.jmaa.2023.127283 |
[12] | Y. M. Guo, T. T. Li, Modeling and dynamic analysis of novel coronavirus pneumonia (COVID-19) in China, J. Appl. Math. Comput., 68 (2022), 2641–2666. https://doi.org/10.1007/s12190-021-01611-z doi: 10.1007/s12190-021-01611-z |
[13] | L. H. Zhu, W. X. Zheng, S. L. Shen, Dynamical analysis of a si epidemic-like propagation model with non-smooth control, Chaos Soliton. Fract., 169 (2023), 113273. https://doi.org/10.1016/j.chaos.2023.113273 doi: 10.1016/j.chaos.2023.113273 |
[14] | L. H. Zhu, F. Yang, G. Guan, Z. D. Zhang, Modeling the dynamics of rumor diffusion over complex networks, Inform. Sciences, 562 (2021), 240–258. https://doi.org/10.1016/j.ins.2020.12.071 doi: 10.1016/j.ins.2020.12.071 |
[15] | X. R. Ma, S. L. Shen, L. H. Zhu, Complex dynamic analysis of a reaction-diffusion network information propagation model with non-smooth control, Inform. Sciences, 622 (2023), 1141–1161. https://doi.org/10.1016/j.ins.2022.12.013 doi: 10.1016/j.ins.2022.12.013 |
[16] | D. J. Daley, D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118. https://doi.org/10.1038/2041118a0 doi: 10.1038/2041118a0 |
[17] | D. P. Maki, Mathematical models and applications: with emphasis on the social, life, and management sciences, New Haven: Pearson College Div, 1973. |
[18] | A. Sudbury, The proportion of the population never hearing a rumour, J. Appl. Probab., 22 (1985), 443–446. https://doi.org/10.2307/3213787 doi: 10.2307/3213787 |
[19] | X. W. Wang, Y. Q. Li, J. X. Li, Y. T. Liu, C. C. Qiu, A rumor reversal model of online health information during the Covid-19 epidemic, Inform. Process. Manag., 58 (2021), 102731. https://doi.org/10.1016/j.ipm.2021.102731 doi: 10.1016/j.ipm.2021.102731 |
[20] | H. X. Ding, L. Xie, Simulating rumor spreading and rebuttal strategy with rebuttal forgetting: An agent-based modeling approach, Physica A, 612 (2023), 128488. https://doi.org/10.1016/j.physa.2023.128488 doi: 10.1016/j.physa.2023.128488 |
[21] | G. F. de Arruda, L. G. S. Jeub, A. S. Mata, F. A. Rodrigues, Y. Moreno, From subcritical behavior to a correlation-induced transition in rumor models, Nat. Commun., 13 (2022), 3049. https://doi.org/10.1038/s41467-022-30683-z doi: 10.1038/s41467-022-30683-z |
[22] | L. A. Huo, S. J. Chen, L. J. Zhao, Dynamic analysis of the rumor propagation model with consideration of the wise man and social reinforcement, Physica A, 571 (2021), 125828. https://doi.org/10.1016/j.physa.2021.125828 doi: 10.1016/j.physa.2021.125828 |
[23] | F. L. Yin, X. Y. Jiang, X. Q. Qian, X. Y. Xia, Y. Y. Pan, J. H. Wu, Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics, Chaos Soliton. Fract., 162 (2022), 112392. https://doi.org/10.1016/j.chaos.2022.112392 doi: 10.1016/j.chaos.2022.112392 |
[24] | S. S. Chen, H. J. Jiang, L. Li, J. R. Li, Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks, Chaos Soliton. Fract., 140 (2020), 110206. https://doi.org/10.1016/j.chaos.2020.110206 doi: 10.1016/j.chaos.2020.110206 |
[25] | Y. Y. Cheng, L. A. Huo, L. J. Zhao, Dynamical behaviors and control measures of rumor-spreading model in consideration of the infected media and time delay, Inform. Sciences, 564 (2021), 237–253. https://doi.org/10.1016/j.ins.2021.02.047 doi: 10.1016/j.ins.2021.02.047 |
[26] | Y. Y. Cheng, L. A. Huo, L. J. Zhao, Stability analysis and optimal control of rumor spreading model under media coverage considering time delay and pulse vaccination, Chaos Soliton. Fract., 157 (2022), 111931. https://doi.org/10.1016/j.chaos.2022.111931 doi: 10.1016/j.chaos.2022.111931 |
[27] | Y. M. Guo, T. T. Li, Dynamics and optimal control of an online game addiction model with considering family education, AIMS Mathematics, 7 (2022), 3745–3770. https://doi.org/10.3934/math.2022208 doi: 10.3934/math.2022208 |
[28] | Y. F. Dong, L. A. Huo, L. Zhao, An improved two-layer model for rumor propagation considering time delay and event-triggered impulsive control strategy, Chaos Soliton. Fract., 164 (2022), 112711. https://doi.org/10.1016/j.chaos.2022.112711 doi: 10.1016/j.chaos.2022.112711 |
[29] | W. Q. Pan, W. J. Yan, Y. H. Hu, R. M. He, L. B. Wu, Dynamic analysis of a sidrw rumor propagation model considering the effect of media reports and rumor refuters, Nonlinear Dyn., 111 (2023), 3925–3936. https://doi.org/10.1007/s11071-022-07947-w doi: 10.1007/s11071-022-07947-w |
[30] | L. H. Zhu, L. He, Pattern formation in a reaction-diffusion rumor propagation system with allee effect and time delay, Nonlinear Dyn., 107 (2022), 3041–3063. https://doi.org/10.1007/s11071-021-07106-7 doi: 10.1007/s11071-021-07106-7 |
[31] | L. H. Zhu, X. W. Wang, Z. D. Zhang, C. X. Lei, Spatial dynamics and optimization method for a rumor propagation model in both homogeneous and heterogeneous environment, Nonlinear Dyn., 105 (2021), 3791–3817. https://doi.org/10.1007/s11071-021-06782-9 doi: 10.1007/s11071-021-06782-9 |
[32] | L. H. Zhu, W. S. Liu, Z. D. Zhang, Delay differential equations modeling of rumor propagation in both homogeneous and heterogeneous networks with a forced silence function, Appl. Math. Comput., 370 (2020), 124925. https://doi.org/10.1016/j.amc.2019.124925 doi: 10.1016/j.amc.2019.124925 |