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Abstract: Rumor spreading on social media platforms can significantly impact public opinion and
decision-making. In this paper, we proposed an innovative ignorant-spreader-expositor-hibernator-
remover (ISEHR) rumor-spreading model with multivariate gatekeepers. Specifically, by analyzing the
model’s dynamics, we identified the critical threshold that determined the persistence or extinction of
rumor spreading. Moreover, we applied the Routh-Hurwitz judgment, Lyapunov theory, and LaSalle’s
invariance principle to investigate the existence and stability of the rumor-free/rumor equilibrium
points. Furthermore, we introduced the optimal control to alleviate rumor spreading with the
multivariate gatekeeper mechanism. Finally, extensive numerical simulations validated our theoretical
findings, providing insights into the complex dynamics of rumor spreading and the effectiveness of the
proposed control measures. Our research contributes to a deeper understanding of rumor spreading on
social networks, offering valuable implications for the development of effective strategies to combat
rumor.
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1. Introduction

Rumor spreading, a ubiquitous phenomenon, is typically defined as the spreading of unverified
messages on social platforms, easily attracting public attention and causing social panic [1]. With
recent advancements of mobile internet technologies, social platforms not only provide a convenient
way for netizens to access and exchange information but also facilitate rumor spreading [2]. The
internet mediums have more remarkable characteristics than traditional oral communication, such as
faster speed, broader scope, and more substantial harm. Rumors significantly affect human affairs
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and social order by failing to be reasonably controlled in an emergency. Practical experience shows
that scientific defense and intervention of rumor spreading can be effectively carried out with an in-
depth understanding of the scientific laws of rumor spreading [3], thereby undoubtedly stimulating the
current intensive study of the rumor-spreading model on social networks.

Recently, rumor spreading has drawn considerable attention due to the universality and harmfulness
of rumors, which involve many disciplines, such as psychology [2], mathematics [4], physics [5], and
so on. Early on, epidemic models were used to study the spreading of smallpox [6–8], which marked
the advent of the epidemic model era. Due to the obvious similarity of the law between rumor spreading
and disease spreading [9–12], researchers proposed some classical models based on epidemic models to
investigate the dynamics laws of rumor spreading, such as susceptible-infected (SI) [13], susceptible-
infected-susceptible (SIS) [14], and susceptible-infected-recovered (SIR) [15]. Daley et al. first put
forward the classic Daley-Kendall (DK) model in 1964 [16]. Consequently, Mak et al. further
presented the improved Maki-Thompson (MT) model [17]. Sudbury et al. explored the dynamics
of rumor spreading with the SIR model in 1985 [18]. Building upon this, researchers continually
advance various variant models, which are used to explore the impact of different mechanisms on rumor
spreading. The isolation mechanism can effectively avoid contact between users, thereby reducing
information flow and controlling the scope of rumor spreading. Zhu et al. investigated the compulsory
silence functionality [1]. Jiang et al. found that the isolation mechanism was the most effective
strategy to restrain rumor propagation with a two-stage rumor-spreading model [4]. Subsequently, Liu
et al. [19] also adopted the isolation transformation strategies as external and soft control strategies.
Meanwhile, there are physiological characteristics that strikingly impact rumor spreading [20–22],
such as the forgetting mechanisms. Ding et al. found that the forgetting mechanism greatly alleviates
the harmfulness of rumor spreading. Ding et al. [20] and Ferraz et al. [21] explored the effect of the
forgetting mechanism on rumor spreading and observed that the forgetting mechanism was closely
related to the lifespan of rumors. What is more, the information disclosure mechanism can enable
netizens to timely access real information and eliminate misunderstandings caused by rumors. To
capture the dynamic interaction law between rumors and anti-rumors, Ghosh et al. [22] and Yin et
al. [23] investigated the counteractive role.

Although the existing efforts have verified that disclosure, enforced silence, and forgetting
mechanisms can largely affect rumor spreading, they fail to simultaneously combine them. In fact,
rumor spreading is a complex and dynamic process affected by various factors in real scenarios.
Meanwhile, curbing rumor spreading is consistently an enduring topic [24] due to the serious
harmfulness for the nation and society. Our goal is to essentially eliminate rumor spreading on
social networks as much as possible at the minimum cost within the expected time. Thereby rumor
control mechanisms are necessary to mitigate the harm done, such as deleting posts [25], education
mechanism [26, 27], and releasing anti-rumor information [28, 29]. However, the existing works
primarily focus on no more than two control strategies and ignore the role of multivariate factors,
thereby failing to be suitable in complex real-world scenarios. Therefore, it has profound practical
significance and application value to explore the dynamic behaviors of rumor spreading considering
joint disclosure, forgetting, enforced silence, and control mechanisms. Undoubtedly, this also increases
the complexity of rumor spreading models.

In response to the above challenges, in this paper, we propose an innovative ISEHR rumor-spreading
model with a multivariate gatekeeper mechanism. Specifically, we first calculate the threshold of
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our model by using the next-generation matrix. Further, based on the Routh-Hurwitz judgment,
Lyapunov theory, and LaSalle’s invariance principle, we analyze the existence and stability of the
rumor-free/rumor equilibrium points. In addition, the optimized control is investigated to optimize
the multivariate gatekeeper mechanism. Finally, extensive numerical simulations are conducted to
validate the correctness of the theoretical analysis. In a nutshell, the main contributions of this paper
are described as follows:

1) Under appropriate assumptions, considering the disclosure, forgetting, and enforced silence
mechanisms, we establish an innovative ISEHR model with a multivariate gatekeeper mechanism,
which is beneficial for understanding the laws of rumor spreading.

2) We introduce the concept of multivariate gatekeepers from the communication discipline. We
present an optimized control model with the multivariate gatekeeper strategies, such as the nation,
social platforms, and administrators.

3) Extensive numerical simulations validate the correctness of the theoretical analysis with
sensitivity analysis under different initialization values. Our findings indicate that the proposed
mechanisms and strategies seriously affect rumor spreading, and complex interactions exist among
different factors. These findings provide an effective and scientific basis of decisions for society and
national governance.

The structure the rest of this paper is as follows: The establishment process of our model is first
introduced, and the meaning of each variable is clarified, in Section 2. In Section 3, the existence and
distribution of the equilibrium point are discussed. In Section 4, the optimal control problem is studied.
Numerical simulations of the theorems mentioned are given in Section 5. The last section includes the
summary of this paper, followed by the display of references.

2. Model formulation with basic properties

In this paper, we propose a novel ISEHR model with a multivariate gatekeeper mechanism, which
considers disclosure, forgetting, and enforced silence mechanisms and introduce the expositor and
hibernator roles. The total population of the system is dynamically changed over time, hence ushering
an entering and leaving mechanism for the dynamic system. Meanwhile, we divide them into five
categories, specifically Ignorant, Expositor, Spreader, Hibernator, and Remover, where I (Ignorant)
represents the Ignorant have not been exposed to rumors and are easily influenced; the E (Expositor)
group who know and spread the truth; the S (Spreader) group who believe and spread rumors; the H
(Hibernator) describes the Hibernator who cannot spread rumors temporarily but can spread them
in the future; and the R (Remover) group who used to be rumor-believers, but have been made
conscious that rumors are incorrect and will no longer spread them. The densities of Ignorant, Spreader,
Expositor, Hibernator, and Remover are denoted by I(t), S(t), E(t), H(t), and R(t) at time t, respectively.
Additionally, our model only considers the disclosure, forgetting, and enforced silence mechanisms and
ignores other factors, such as time delay [30] and topology structure [31], which will be considered in
our future work. Our model is schematically shown in Figure 1.
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Figure 1. The schematic diagram of the ISEHR model.

Table 1. Parameter description of our model.

Parameter Meaning
Π The density of an individual entering the dynamic system.
α The probability of an Ignorant becoming a Spreaders.
µ The density of each state leaving the dynamic system.
β The probability of an Ignorant becoming an Expositor.
γ When a Spreader comes into contact with truth published by an Expositor, the Spreader

becomes a Removal with the probability γ.
θ According to the enforced silence mechanism, a Spreader becomes a Hibernator with

the probability θ.
η Due to the Hibernator’s forgetting mechanism, a Hibernator becomes a Removal with

the probability η.

According to the facts about rumor spreading, the parameters of the system (2.1) are non-negative
constants, which are outlined in Table 1, such as Π, α, µ, β, γ, θ, and η, and the range is between zero
and one. The assumptions of our model are as follows:

1) When an Ignorant comes into contact with a rumor posted by the Spreaders on social networks,
they may become a Spreader with the probability α. Meanwhile, due to differences in the Ignorants’
abilities to identify rumors, part of the Ignorant group may become Expositors with the probability β,
avoiding rumor spreading to a certain extent.

2) After a Spreader exposes the truths published by the Expositors, the Spreader realizes that the
information encountered is incorrect, hence the Spreader will actively become a Removal with the
probability γ. Meanwhile, considering the phenomenon of hardcore fans among Spreaders on social
networks, they firmly believe that the rumor released is correct. Social platforms alleviate rumor
spreading with the enforced silence mechanism, such as blocking the account. The Spreader will
passively become a Hibernator with the probability θ and will no longer spread rumors.

3) Due to the inherent property of forgetting information for the population, a Hibernator become a
Removal with the probability θ.
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4) The density of the individuals entering the dynamic system is Π, the density of the Ignorant,
Expositor, Spreader, Hibernator, and Remover leaving the system is µ.

According to the above propagation criteria, our model can be expressed as shown in the following
nonlinear differential equations (2.1).

dI(t)
dt = Π − αI(t)S (t) − βI(t)S (t) − µI(t)

dS (t)
dt = αI(t)S (t) − γS (t)E(t) − θS (t)E(t) − µS (t)

dE(t)
dt = βI(t)S (t) − µE(t)

dH(t)
dt = θS (t)E(t) − ηH(t) − µH(t)

dR(t)
dt = γS (t)E(t) + ηH(t) − µR(t)

. (2.1)

The initial conditions of the dynamic system (2.1) satisfies the following Eq (2.2).

I(0) ≥ 0, S (0) ≥ 0, E(0) ≥ 0,H(0) ≥ 0,R(0) ≥ 0. (2.2)

The total population of the system (2.1) is N(t), as shown in Eq (2.3).

N(t) = I(t) + S (t) + E(t) + H(t) + R(t). (2.3)

Taking the derivative on both sides of Eq (2.3), and then substituting Eq (2.1), we can obtain
Eq (2.4).

dN(t)
dt
= Π − µN(t). (2.4)

We achieve the following results by using the variation constants method.

N(t) =
Π

µ
+

(
N(0) −

Π

µ

)
e−dt. (2.5)

If t → +∞, the total population of the system (2.1) is N(t) = Π
µ

.
In conclusion, the total population of the system (2.1) at any moment is non-negative. Therefore,

the positive invariant set of the system (2.1) is presented as shown in Eq (2.6).

ℵ =

{
(I, S , E,H,R) ∈ R5, 0 ≤ I + S + E + H + R ≤

Π

µ

}
. (2.6)

We can clearly observe that the R state does not affect the stability of the system from Eq (2.1). For
simplicity, we simplify the system (2.1) as shown in the following Eq (2.7).

dI(t)
dt = Π − αI(t)S (t) − βI(t)S (t) − µI(t)

dS (t)
dt = αI(t)S (t) − γS (t)E(t) − θS (t)E(t) − µS (t)

dE(t)
dt = βI(t)S (t) − µE(t)

dH(t)
dt = θS (t)E(t) − ηH(t) − µH(t)

. (2.7)

AIMS Mathematics Volume 9, Issue 11, 31658–31678.



31663

3. Stability analysis

In the following, we mainly focus on the stability analysis of our model. Specifically, we utilize
the next-generation matrix method to solve the basic reproduction number and apply in the Lyapunov
theory to analyze the stability of the rumor-free/rumor equilibrium point in the dynamic system (2.7).

Let ϕ (t) = (I(t), S (t), E(t),H(t))T , and the dynamic system (2.7) is simplified as shown in the
following Eq (3.1).

ϕ (t) =


Π − αI(t)S (t) − βI(t)S (t) − µI(t)

αI(t)S (t) − γS (t)E(t) − θS (t)E(t) − µS (t)
βI(t)S (t) − µE(t)

θS (t)E(t) − ηH(t) − µH(t)

 . (3.1)

Deriving for ϕ(t), the Eq (3.1) is written as shown in the following Eq (3.2).

dϕ (t)
dt
= F (ϕ) − V (ϕ) =

(
dI(t)

dt
,

dS (t)
dt

,
dE(t)

dt
,

dH(t)
dt

)T

, (3.2)

where F (ϕ) =


0

αI(t)S (t)
βI(t)S (t)
θS (t)E(t)

, and V (ϕ) =


αI(t)S (t) + βI(t)S (t) + µI(t) − Π
γS (t)E(t) + θS (t)E(t) + µS (t)

µE(t)
ηH(t) + µH(t)

.
The Jacobian matrices of F(ϕ) and V(ϕ) are described as shown in the following Eqs (3.3) and (3.4),

respectively.

D (F (ϕ)) =


0 0 0 0
αS αI 0 0
βS βI 0 0
0 θE θS 0

 . (3.3)

D (V (ϕ)) =


αS + βS + µ αI + βI 0 0

0 γE + θE + µ γS + θS 0
0 0 µ 0
0 0 0 η + µ

 . (3.4)

For simplicity, the rumor-free equilibrium point is substituted into Eqs (3.3) and (3.4), obtaining
Eqs (3.5)–(3.7).

D (F (E0)) =


0 0 0 0
0 αΠ

µ
0 0

0 βΠ

µ
0 0

0 0 0 0

 . (3.5)

D (V (E0)) =


µ (α+β)Π

µ
0 0

0 µ 0 0
0 0 µ 0
0 0 0 η + µ

 . (3.6)
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D(V (E0))−1 =


1
µ
−

(α+β)Π
µ3 0 0

0 1
µ

0 0
0 0 1

µ
0

0 0 0 1
µ+η

 . (3.7)

The basic reproduction numberℜ0 of the dynamic system (2.1) is the spectral radius of the matrix
FV−1, as shown in Eq (3.8).

ρ
(
FV−1

)
= D (F (E0)) ∗ D(V (E0))−1 =


0 0 0 0
0 αΠ

µ2 0 0
0 βΠ

µ2 0 0
0 0 0 0

 . (3.8)

Solving for the eigenvalues of Eq (3.8), we obtain Eq (3.9).

λ1 = λ2 = λ3 = 0, λ4 =
αΠ

µ2 . (3.9)

The basic reproduction numberℜ0 of the dynamic system (2.1) is shown in Eq (3.10).

ℜ0 = max {λ1, λ2, λ3, λ4} =
αΠ

µ2 . (3.10)

3.1. The stability analysis of rumor-free equilibrium

3.1.1. The local stability analysis of rumor-free equilibrium

Theorem 1. For the dynamic system (2.7), if ℜ0 < 1, the rumor-free equilibrium E0 =
(
Π
d , 0, 0, 0

)
is

locally asymptotically stable; ifℜ0 > 1, then the rumor-free equilibrium E0 =
(
Π
d , 0, 0, 0

)
is unstable.

Proof: The Jacobian matrix of the dynamic system (2.7) at the rumor-free equilibrium E0 =
(
Π
d , 0, 0, 0

)
is described as shown in Eq (3.11).

J (E0) =


−µ − (α+β)Π

µ
0 0

0 αΠ
µ
− µ 0 0

0 βΠ

µ
−µ 0

0 0 0 − (η + µ)

 . (3.11)

The eigenvalues of Eq (3.11) are∣∣∣∣∣∣∣∣∣∣∣∣
λ + µ (α+β)Π

µ
0 0

0 λ − αΠ
µ
+ µ 0 0

0 −
βΠ

µ
λ + µ 0

0 0 0 λ + (η + µ)

∣∣∣∣∣∣∣∣∣∣∣∣ = 0. (3.12)

Furthermore, we can obtain

(λ + µ)
[(
λ −

αΠ

µ
+ µ

)
(λ + µ) (λ + η + µ)

]
= 0. (3.13)
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The eigenvalues of Eq (3.13) are given by

λ1 = λ2 = −µ, λ3 = − (η + µ) , λ4 =
αΠ

µ
− µ =

αΠ − µ2

µ
=

1
µ

(
ℜ0 − 1

)
. (3.14)

According to Eq (3.14), if λ4 < 0, then the following Eq (3.15) needs to be satisfied.

ℜ0 =
αΠ

µ2 < 1. (3.15)

If ℜ0 < 1, then λ1 < 0, λ2 < 0, λ3 < 0, and λ4 < 0 hold, and all eigenvalues of the Eq (3.13) are
all negative. Therefore, the rumor-free equilibrium E0 =

(
Π
d , 0, 0, 0

)
is locally asymptotically stable.

Furthermore, if ℜ0 > 1, and then the eigenvalue λ4 is positive, then the dynamic system (2.7) is
unstable at the rumor-free equilibrium E0 =

(
Π
d , 0, 0, 0

)
.

3.1.2. The global stability analysis of rumor-free equilibrium

Theorem 2. For the dynamic system (2.7), if ℜ0 < 1, the rumor-free equilibrium E0 =
(
Π
d , 0, 0, 0

)
is

globally asymptotically stable.
Proof: We define the Lyapunov function of the dynamic system (2.7) as shown in Eq (3.16).

V(t) = S (t) + H(t),V(t) ≥ 0. (3.16)

Deriving both sides of Eq (3.16) and substituting Eq (2.1) into Eq (3.16), we can obtain

dV(t)
dt = αI(t)S (t) − γS (t)E(t) − θS (t)E(t) − µS(t)+θS (t)E(t) − ηH(t) − µH(t)
= (αI(t) − µ) S (t) − γS (t)E(t) − ηH(t) − µH(t)
≤

αΠ−µ2

µ
S(t) − γS(t)E(t) − ηH(t) − µH(t)

= 1
µ

(
ℜ0 − 1

)
S(t) − γS(t)E(t) − ηH(t) − µH(t).

(3.17)

If the Eq (3.17) holds, we can obtain

ℜ0 =
αΠ

µ2 < 1. (3.18)

Combining Eqs (3.17) and (3.18), we obviously find that ifℜ0 < 1, then dV(t)
dt < 0. Then dV(t)

dt = 0,
if and only if E0 =

(
Π
d , 0, 0, 0

)
.

According to the Lyapunov theory, it can be inferred that if ℜ0 < 1, the dynamic system (2.7) is
globally asymptotically stable at E0 =

(
Π
d , 0, 0, 0

)
.

3.2. The stability analysis of rumor equilibrium

In this section, we primarily discuss the properties of rumor equilibrium. We first assume that there
exists the rumor equilibrium E1

∗ = (I∗, S ∗, E∗,H∗). The dynamic system (2.7) satisfies the following
Eq (3.19). 

Π − αI∗S∗ − βI∗S∗ − µI∗ = 0
αI∗S∗ − γS∗E∗ − θS∗E∗ − µS ∗ = 0
βI∗S∗ − µE∗ = 0
θS∗E∗ − ηH∗ − µH∗ = 0

. (3.19)
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We can obtain Eqs (3.20)–(3.23) from Eq (3.19).

I∗ =
Π

αS∗ + βS∗ + µ
. (3.20)

E∗ =
βI∗S ∗

µ
=

βΠS ∗

µ (αS ∗ + βS ∗ + µ)
. (3.21)

S ∗ =
µ
(
αΠ − µ2

)
µ2α + µ2β + (γ + θ) βΠ

. (3.22)

H∗ =
θβΠ

(
αΠ − µ2

)
S ∗[

µ2α + µ2β + (γ + θ) βΠ
]
(αS ∗ + βS ∗ + µ) (η + µ)

. (3.23)

Combining Eqs (3.19)–(3.23), we can obtain the expression R∗ with S ∗. Therefore, the rumor
equilibrium E1

∗ = (I∗, S ∗, E∗,H∗) exists.

3.2.1. The local stability analysis of rumor equilibrium

Theorem 3. If H(S ∗) > 0, G(S ∗) > 0, K(S ∗) > 0, and H(S ∗)G(S ∗) > K(S ∗), the dynamic system (2.7)
is locally asymptotically stable at the rumor equilibrium E1

∗ = (I∗, S ∗, E∗,H∗).
Proof: The Jacobian matrix of the dynamic system (2.7) at the rumor equilibrium E1

∗ = (I∗, S ∗, E∗,H∗)
is as shown in Eq (3.24).

J(E1
∗) =


−αS ∗ − βS ∗ − µ − (α + β) I∗ 0 0

αS ∗ αI∗ − γE∗ − θE∗ − µ − (γ + θ) S ∗ 0
βS ∗ βI∗ −µ 0

0 θE∗ θS ∗ − (η + µ)

 . (3.24)

The characteristic equation is written as shown in Eq (3.25).

(λ + η + µ)
[
(λ + αS ∗ + βS ∗ + µ) (λ − αI∗ + γE∗ + θE∗ + µ) (λ + µ) − β (α + β) (γ + θ) I∗S ∗2

+α (λ + µ) (α + β) S ∗I∗ + β (λ + αS ∗ + βS ∗ + µ) (γ + θ) I∗S ∗
]
= 0.

(3.25)
For brevity, let a = αS ∗ + βS ∗ + µ, b = βΠ(γ+θ)S ∗

µ[(α+β)S ∗+µ] −
αΠ

(α+β)S ∗+µ + µ, c = −βΠ(α+β)(γ+θ)S ∗2

(α+β)S ∗+µ , d = αΠ(α+β)S ∗

(α+β)S ∗+µ ,

and e = βΠ(γ+θ)S ∗

(α+β)S ∗+µ .
Further, we can obtain

H(S ∗) = a + b + µ. (3.26)

G(S ∗) = (a + b) µ + ab + d + e. (3.27)

K(S ∗) = µab + µd + ae + c. (3.28)

Combining Eqs (3.26)–(3.28), the simplified form of Eq (3.25) is obtained.

(λ + d)
(
λ3 + H(S ∗)λ2 +G(S ∗)λ + K(S ∗)

)
= 0. (3.29)
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Remarkably, we observe the following from Eq (3.29).

λ1 = −d < 0. (3.30)

λ3 + H(S ∗)λ2 +G(S ∗)λ + K(S ∗) = 0. (3.31)

According to the Routh-Hurwitz criterion and Eq (3.31), if H(S ∗) > 0, G(S ∗) > 0, K(S ∗) > 0, and
H(S ∗)G(S ∗) > K(S ∗), then λ2, λ3, and λ4 have negative real parts. Therefore, the dynamic system (2.7)
is locally asymptotically stable at the rumor equilibrium E1

∗ = (I∗, S ∗, E∗,H∗).

3.2.2. The global stability analysis of rumor equilibrium

Theorem 4. For the dynamic system (2.7), the rumor equilibrium E1
∗ = (I∗, S ∗, E∗,H∗) is globally

asymptotically stable ifℜ0 > 1.
Proof: Let g(a) = a − 1 − ln a, where a > 0 and g(a) ≥ 0. We construct the Lyapunov function, as
shown in Eq (3.32).

V(t) = AI∗g
(

I(t)
I∗

)
+ BS ∗g

(
S (t)
S ∗

)
+CE∗g

(
E(t)
E∗

)
. (3.32)

Assuming x = I(t)
I∗ , y = S (t)

S ∗ , and z = E(t)
E∗ , where A, B, and C are all positive constants, then Eq (3.32)

is derived, obtaining Eq (3.33).

dV(t)
dt
= A

(
1 −

1
x

)
dI(t)

dt
+ B

(
1 −

1
y

)
dS (t)

dt
+C

(
1 −

1
z

)
dE(t)

dt
. (3.33)

According to Eqs (2.7) and (3.19), we obtain the following Eq (3.34).
dI(t)

dt = αI∗S ∗ (1 − xy) + βI∗S ∗ (1 − xy) − µI∗ (x − 1)
dS (t)

dt = αI∗S ∗ (xy − 1) + γS ∗E∗ (1 − yz) + θS ∗E∗ (1 − yz) − µS ∗ (y − 1)
dE(t)

dt = βI∗S ∗ (xy − 1) − µE∗ (z − 1)
. (3.34)

Eq (3.35) is given from Eqs (3.33) and (3.34).

dV(t)
dt = A

(
1 − 1

x

) [
αI∗S ∗ (1 − xy) + βI∗S ∗ (1 − xy) − µI∗ (x − 1)

]
+B

(
1 − 1

y

) [
αI∗S ∗ (xy − 1) + γS ∗E∗ (1 − yz) + θS ∗E∗ (1 − yz) − µS ∗ (y − 1)

]
+C

(
1 − 1

z

) [
βI∗S ∗ (xy − 1) − µE∗ (z − 1)

]
=

[
A (α + β) I∗S ∗ − BµS ∗

]
g(y) +

[
BαI∗S ∗ − B (γ + θ) S ∗E∗ − BµS ∗

]
g
(

1
y

)
− (AµI∗ + BαI∗S ∗) g (x) −

[
A (α + β) I∗S ∗ − AµI∗

]
g
(

1
x

)
+

[
B (γ + θ) S ∗E∗ −CµE∗

]
g (z)

+ (CβI∗S ∗ −CµE∗) g
(

1
z

)
+

[
BαI∗S ∗ +CβI∗S ∗ − A (α + β) I∗S ∗

]
g (xy)

−B (γ + θ) S ∗E∗g (yz) −CβI∗S ∗g
(

xy
z

)
.

(3.35)

We can find the suitable constants A, B, and C to ensure that the following Eqs (3.36)–(3.40) hold.

A (α + β) I∗S ∗ − BµS ∗ ≤ 0. (3.36)

BαI∗S ∗ − B (γ + θ) S ∗E∗ − BµS ∗ ≤ 0. (3.37)

B (γ + θ) S ∗E∗ −CµE∗ ≤ 0. (3.38)
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CβI∗S ∗ −CµE∗ ≤ 0. (3.39)

BαI∗S ∗ +CβI∗S ∗ − A (α + β) I∗S ∗ ≤ 0. (3.40)

We can find that dV(t)
dt ≤ 0 holds. If and only if I(t) = I∗, S (t) = S ∗, and E(t) = E∗, then dV(t)

dt = 0.
Therefore, the dynamic system (2.7) is globally asymptotically stable at the rumor equilibrium E1

∗ =

(I∗, S ∗, E∗,H∗).

4. The optimal control

In this section, we introduce a real-time optimization control strategy. Our goal is to contain
rumor spreading in the expected time with minimal cost. Due to the severe harmfulness of rumors
for the nation and society, all level subjects must take effective measures to curb rumor spreading.
The nation improves the ability of the Ignorant to identify rumors with educational technology and
rumor-disclosure mechanisms, the platform organizer adopts the control technology to filter and block
rumors, and the administrators continuously communicate with the Hibernator, gradually alleviating
rumor spreading. The above strategies constitute a multivariate gatekeeper mechanism to govern rumor
spreading. After adding optimized control, Eq (4.1) is given as shown in the following:

dI(t)
dt = Π − αI(t)S (t) − βI(t)S (t) − µI(t) − ψ1(t)I(t)

dS (t)
dt = αI(t)S (t) − γS (t)E(t) − θS (t)E(t) − µS (t) − ψ2(t)S (t)

dE(t)
dt = βI(t)S (t) − µE(t)

dH(t)
dt = θS (t)E(t) − ηH(t) − µH(t) − ψ3(t)H(t)

dR(t)
dt = γS (t)E(t) + ηH(t) − µR(t) + ψ1(t)I(t) + ψ2(t)S (t) + ψ3(t)H(t)

. (4.1)

where ψ1, ψ2, and ψ3 represent the control intensity of the nation, the social platforms, and the
administrators, respectively. To calculate the control cost, Ωi and φi (i = 1, 2, 3) represent the
average cost of controlling the Ignorant, Spreader, and Hibernator at the nation, social platform, and
administrator level, respectively, and the control cycle time is [0,T ]. The constructed optimal control
objective function is shown as the following Eq (4.2).

J (ψ1(t), ψ2(t), ψ3(t)) =

T∫
0

[
Ω1I(t) + Ω2S (t) + Ω3H(t) + φ1ψ1

2 + φ2ψ2
2 + φ3ψ3

2
]
dt, (4.2)

where the feasible regions of ψ1(t), ψ2(t), and ψ3(t) are shown in Eq (4.3).

∆ = {ψ1, ψ2, ψ3|0 ≤ ψ1(t) ≤ ψ1
max, 0 ≤ ψ2(t) ≤ ψ2

max, 0 ≤ ψ3(t) ≤ ψ3
max} , (4.3)

where ψ1
max ≤ 1, ψ2

max ≤ 1, and ψ3
max ≤ 1 are the upper bound of ψ1(t), ψ2(t), and ψ3(t), respectively.

The optimal control ψ1
∗, ψ2

∗, and ψ3
∗ satisfy J (ψ1

∗, ψ2
∗, ψ3

∗) = min {J (ψ1 (t) , ψ2 (t) , ψ3 (t)) ∈ ∆}.
We construct the following Lagrange function to obtain the optimal control, as shown in Eq (4.4).

L(I, S ,H, ψ1(t), ψ2(t), ψ3(t)) = Ω1I(t) + Ω2S (t) + Ω3H(t) + φ1ψ1
2 + φ2ψ2

2 + φ3ψ3
2. (4.4)
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We define the Hamiltonian function for the optimized dynamic control system, as shown in Eq (4.5).

H′(I(t), S (t),H(t), ψi(t), λ j(t)) = L(I, S ,H, ψ1(t), ψ2(t), ψ3(t))
+λ1(t) (Π − αI(t)S (t) − βI(t)S (t) − µI(t) − ψ1(t)I(t))
+λ2(t) (αI(t)S (t) − γS (t)E(t) − θS (t)E(t) − µS (t) − ψ2(t)S (t))
+λ3(t) (βI(t)S (t) − µE(t))
+λ4(t) (θS (t)E(t) − ηH(t) − µH(t) − ψ3(t)H(t))
+λ5(t) (γS (t)E(t) + ηH(t) − µR(t) + ψ1(t)I(t) + ψ2(t)S (t) + ψ3(t)H(t)) ,

(4.5)

where i = 1, 2, 3, 4, 5. We apply the Pontryagin maximum principle to obtain the following Lemma 1:
Lemma 1. Let I∗, S ∗, E∗, H∗, and R∗ are the optimal solutions corresponding to the optimal control
(ψ1
∗, ψ2

∗, ψ3
∗). The existing variables λi(t), i = 1, 2, 3, 4, 5, satisfy Eq (4.6).

dλ1(t)
dt = −

∂H′(t)
∂I(t) = −Ω1 + λ1(t) (αS ∗ + βS ∗ + µ + ψ1(t)) − λ2(t)αS ∗

−λ3(t)βS ∗ − λ5(t)ψ1(t)
dλ2(t)

dt = −
∂H′(t)
∂S (t) = −Ω2 + λ1(t) (α + β) I∗

+λ2(t) (−αI∗ + γE∗ + θE∗ + µ + ψ2(t))
−λ3(t)βI∗ − λ4(t)θE∗ − λ5(t) (γE∗ + ψ2(t))
dλ3(t)

dt = −
∂H′(t)
∂E(t) = λ2(t) (γ + θ) S ∗ + λ3(t)µ − λ4(t)θS ∗ − λ5(t)γS ∗

dλ4(t)
dt = −

∂H′(t)
∂H(t) = −Ω3 + λ4(t) (η + µ + ψ3(t)) − λ5(t) (η + ψ3(t))

dλ5(t)
dt = −

∂H′(t)
∂R(t) = λ5(t)µ

. (4.6)

According to the boundary conditions of λi(t), i = 1, 2, 3, 4, 5, the optimal control (ψ1
∗, ψ2

∗, ψ3
∗) can

be described as the following Eqs (4.7)–(4.9) from Eq (4.6).

ψ1
∗ = min

{
max

{
(λ1 − λ5) I∗

2φ1

}
, ψ1

max
}
. (4.7)

ψ2
∗ = min

{
max{

(λ2 − λ5) S∗

2φ2
}, ψ2

max
}
. (4.8)

ψ3
∗ = min

{
max

{
(λ4 − λ5) H∗

2φ3

}
, ψ3

max
}
. (4.9)

Proof: Let I(t) = I∗, S (t) = S ∗, E(t) = E∗, H(t) = H∗, and R(t) = R∗, and then, we can obtain the
following equation by using Pontryagin’s Maximum Principle.

dλ1(t)
dt = −

∂H′(t)
∂I(t) = −Ω1 + λ1(t) (αS ∗ + βS ∗ + µ + ψ1(t)) − λ2(t)αS ∗

−λ3(t)βS ∗ − λ5(t)ψ1(t)
dλ2(t)

dt = −
∂H′(t)
∂S (t) = −Ω2 + λ1(t) (α + β) I∗

+λ2(t) (−αI∗ + γE∗ + θE∗ + µ + ψ2(t))
−λ3(t)βI∗ − λ4(t)θE∗ − λ5(t) (γE∗ + ψ2(t))
dλ3(t)

dt = −
∂H′(t)
∂E(t) = λ2(t) (γ + θ) S ∗ + λ3(t)µ − λ4(t)θS ∗ − λ5(t)γS ∗

dλ4(t)
dt = −

∂H′(t)
∂H(t) = −Ω3 + λ4(t) (η + µ + ψ3(t)) − λ5(t) (η + ψ3(t))

dλ5(t)
dt = −

∂H′(t)
∂R(t) = λ5(t)µ

. (4.10)
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Combining the optimization conditions, Eq (4.5) is derived for ψ1(t), ψ2(t), and ψ3(t). We obtain
the following Eqs (4.11)–(4.13).

∂H(t)
∂ψ1(t)

|ψ1(t)=ψ1
∗ = 2φ1ψ1

∗ − λ1(t)I∗ + λ5(t)I∗ = 0. (4.11)

∂H(t)
∂ψ2(t)

|ψ2(t)=ψ2
∗ = 2φ2ψ2

∗ − λ2(t)S ∗ + λ5(t)S ∗ = 0. (4.12)

∂H(t)
∂ψ3(t)

|ψ3(t)=ψ3
∗ = 2φ3ψ3

∗ − λ4(t)H∗ + λ5(t)H∗ = 0. (4.13)

By solving the above Eqs (4.11)–(4.13), we have the optimized control values (4.14)–(4.16).

ψ1
∗ =

(λ1 − λ5) I∗

2φ1
. (4.14)

ψ2
∗ =

(λ2 − λ5) S∗

2φ2
. (4.15)

ψ3
∗ =

(λ4 − λ5) H∗

2φ3
. (4.16)

According to the property of the boundary ∆, the intervals of values ψ1
∗, ψ2

∗, and ψ3
∗ can be

obviously obtained, as shown in Eqs (4.17)–(4.19), respectively.

ψ1
∗ = min

{
max

{
(λ1 − λ5) I∗

2φ1

}
, ψ1

max
}
. (4.17)

ψ2
∗ = min

{
max{

(λ2 − λ5) S∗

2φ2
}, ψ2

max
}
. (4.18)

ψ3
∗ = min

{
max

{
(λ4 − λ5) H∗

2φ3

}
, ψ3

max
}
. (4.19)

5. Numerical simulations

In this section, extensive numerical simulations are conducted to verify the effectiveness of our
model and the proposed optimal control under different parameter values.

5.1. The stability analysis of rumor-free equilibrium

In dynamic system (2.1), we choose Π = 0.001, α = 0.09, β = 0.04, γ = 0.025, θ = 0.05, η = 0.02,
and µ = 0.01, where Π is the density of an individual entering the dynamic system with 0.001, α
corresponds to the probability of an Ignorant becoming a Spreader with 0.09, β signifies the probability
of an Ignorant becoming an Expositor with 0.04, γ presents the probability of a Spreader becoming a
Removal with 0.025, θ is the probability of a Spreader becoming a Hibernator with 0.05, η symbolizes
the probability of the Hibernator becoming the Removal with 0.02, and µ refers to the density of each
state leaving the dynamic system with 0.01. The basic reproduction numberℜ0 = 0.9 < 1 is calculated.
The results are shown in Figure 2.
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(a) The density of I, S, E, H, R evolve over time
in the dynamic system 2.1 underℜ0 < 1.

(b) The density of I, H, R evolve over time under
different initial conditions.

(c) The density of S, E evolve over time under
different initial conditions.

(d) The density of I, E evolve over time
under different initial conditions.

(e) The density of I, S evolve over time
under different initial conditions.

(f) The density of I, S, E evolve over time under
different initial conditions.

Figure 2. Dynamical behaviors of the dynamic system (2.1) withℜ0 < 1.

Under ℜ0 = 0.9 < 1, Figure 2(a) shows the changes in the density for five groups over time. The
density of the Ignorant group shows a decreasing trend, but the densities present first increasing and
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then decreasing for the Expositor, Spreader, Hibernator, and Removal groups over time, and they finally
reach 0. This indicates that there are no more Spreaders in the system (2.1) after reaching the rumor-
free equilibrium. Figures 2(b)–(c) show the trend of the density change for the Ignorant, Hibernator,
Removal, Spreader, and Expositor groups over time under different initial values until they converge to
the equilibrium points E0. Meanwhile, under different initial conditions for the Ignorant group, Figures
2(d)–(e) show the trajectory of the density change for the Ignorant, Spreader, and Expositor group in the
solution space of the dynamic system (2.1), respectively. We observe that Expositors and Spreaders first
increase to a maximum and then decrease as Ignorant decreases. Figure 2(f) shows the trajectory of the
density change for the Ignorant, Spreader, and Expositor groups. We observe that from different initial
states, they all converge to the same equilibrium point E0. In conclusion, the dynamic system (2.1) has
a unique rumor-free equilibrium E0 from Theorem 1, which is locally asymptotic stable, as shown in
Figure 2(a). Meanwhile, the unique rumor-free equilibrium E0 is also globally asymptotically stable
from Theorem 2. We provide numerical simulations to verify the global asymptotic stability of the
dynamic system (2.1), as shown in Figures 2(b)–(f). We observe that (I (t) , S (t) , E (t) ,H (t) ,R (t))
converges to E0, which means that E0 is globally asymptotically stable.

5.2. The stability analysis of rumor equilibrium

Considering the dynamic system (2.1) under initialization parameters Π = 0.01, α = 0.06, β =

0.01, γ = 0.06, θ = 0.04, η = 0.01, and µ = 0.008, where Π denotes the density of an individual
entering the dynamic system with 0.01, α corresponds to the probability of an Ignorant becoming a
Spreader with 0.06, β signifies the probability of an Ignorant becoming an Expositor with 0.01, γ
presents the probability of a Spreader becoming a Removal with 0.06, θ symbolizes the probability
of a Spreader becoming a Hibernator with 0.04, η refers to the probability of a Hibernator becoming
a Removal with 0.01, and µ is the density of each state leaving the dynamic system with 0.008. We
can obtain ℜ0 = 9.375 > 1 by calculation. The dynamic system (2.1) has a rumor equilibrium E1

∗ =

(I∗, S ∗, E∗,H∗,R∗). According to Theorems 3 and 4, the rumor equilibrium E1
∗ is locally and globally

asymptotically stable. We provide simulation experiments to verify the correctness of Theorems 3 and
4, and the results are shown in Figure 3.

Underℜ0 = 9.375 > 1, Figure 3(a) shows the density changes for five groups over time. We observe
that the density of the Ignorant group first decreases and then increases. The density first increases
and then decreases for the Spreaders. At the same time, for the Expositor, Hibernator, and Removal
individuals, we observe that their density shows an upward trend over time. Finally, the density of
all states converge to the equilibrium point E1

∗, which is non-zero. Figure 3(b) shows that under
different initial values for Spreaders, the density of the Spreader and Expositor groups respectively
show a trend of first increasing, then decreasing and increasing, converging to the equilibrium point
E1
∗. Meanwhile, Figures 3(c)–(f) show that the density of the Ignorant, Hibernator, Spreader, and

Removal groups change over time until they approach the equilibrium point E1
∗. Among them, the

Ignorant group generally indicates a downward trend, while Hibernator and Removal show an upward
trend. In conclusion, the dynamic system (2.1) has a unique rumor equilibrium E1

∗ from Theorem 3,
which is locally asymptotic stable, as shown in Figure 3(a). Meanwhile, the unique rumor equilibrium
E1
∗ is also globally asymptotic stable from Theorem 4. We provide numerical simulations to verify the

global asymptotic stability of the dynamic system (2.1), as shown in Figures 3(b)–(f). We observe that
(I (t) , S (t) , E (t) ,H (t) ,R (t)) converges to E1

∗, which means that E1
∗ is globally asymptotic stable.
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(a) The density of I, S, E, H, R evolve over time
in the dynamic system 2.1 underℜ0 > 1

(b) The density of S, E evolve over time under
different initial conditions.

(c) The density of I, H, R evolve over time under
different initial conditions.

(d) The density of S, I evolve over time under
different initial conditions.

(e) The density of I, E evolve over time under
different initial conditions.

(f) The density of I, S, E evolve over time under
different initial conditions.

Figure 3. Dynamical behaviors of the dynamic system (2.1) withℜ0 > 1.
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5.3. The feasibility and effectiveness of optimal control

(a) The density of I, S, H evolve over time under
controlled and uncontrolled conditions.

(b) The density of E, R evolve over time under
controlled and uncontrolled conditions.

(c) The density of I evolves over time under
different initial ψ1 conditions.

(d) The density of S evolves over time under
different initial ψ2 conditions.

(e) The density of H evolves over time under
different initial ψ2 conditions.

(f) The density of R evolves over time under
multivariate gatekeeper conditions.

Figure 4. Dynamical behaviors of the dynamic system (2.1) withℜ0 > 1.
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To verify the impact of the multivariate gatekeeper strategy from different levels on rumor spreading,
we construct the optimal control system, as shown in Eq (4.1). Based on the parameters in Section 5.2,
we add the optimal control parameters and provide some numerical simulations. The results are shown
in Figure 4.

Underℜ0 = 9.375 > 1, Figure 4(a) shows the trends of the change for the Ignorant, Spreader, and
Hibernator groups with or without optimal conditions, respectively. Meanwhile, Figures 4(b)–(f) show
the trends of the change for the Expositor, Removal, Ignorant, Spreader, and Hibernator, respectively,
under their respective control strength changes over time. We observe that the greater the strength of
control, the smaller the scale of rumor spreading. At the same time, it can weaken the possibility of
rumors erupting again. In conclusion, as the control conditions increase, the density for the Removal
group increases. This means that compared to a single control factor, the multivariate gatekeeper
strategy introduced can better increase the number of removals, thereby faster controlling the rumor
diffusion. The above analysis is in line with practical application scenarios. Therefore, the multivariate
gatekeeper strategy proposed in this paper can effectively curb rumor diffusion.

5.4. Model comparison

In this subsection, we compare our model with the classical SIRE model [32], where the parameters
of the SIRE are described that b = 0.7, β = 0.7, µ = 0.1, γ = 0.15, Υ = 0.05, < k >= 1.9231, and
α = 0.9. The comparison of our model and the SIRE model is as shown in Figure 5.

From Figure 5, we can observe that the peak density of the Spreader group in our model is smaller
than that in the SIRE model, meaning that the disclosure, forgetting, and enforced silence mechanisms
can better suppress rumor spreading. Thereby, the proposed mechanisms are effective and reasonable
in our model.

Figure 5. Comparison of the ISEHR model and the SIRE model.

6. Conclusions

In this paper, considering the disclosure, forgetting, and enforced silence mechanisms, we propose
an innovative ISEHR rumor-spreading model with the multivariate gatekeeper strategy. The threshold
behavior and dynamics are carried out by analyzing the dynamic system. We obtain some meaningful
theoretical results ensuring local/global asymptotic stable rumor/rumor-free equilibrium points. We
further introduce the optimal control to efficiently curb the rumor spreading at the minimum cost

AIMS Mathematics Volume 9, Issue 11, 31658–31678.



31676

within the expected time. Some numerical simulations are conducted to verify the correctness of
the theoretical analysis. Our findings can essentially help us understand rumor spreading on social
networks, effectively alleviating the harm to human affairs and social order. In the future works, we
will consider dual-layer rumor spreading models with time delay on social networks and explore more
complex control strategies, such as the pulse control strategy.
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