Research article

A new similarity function for Pythagorean fuzzy sets with application in football analysis

  • Received: 08 December 2023 Revised: 08 January 2024 Accepted: 12 January 2024 Published: 24 January 2024
  • MSC : 03E72, 20N20, 47S40

  • The idea of Pythagorean fuzzy sets (PFSs) has been extensively applied in various decision-making scenarios. Many of the applications of PFSs were carried out based on similarity functions. Some methods of similarity functions for PFSs (SFPFSs) cannot be trusted for a reliable interpretations in practical cases due to some of their setbacks. In this work, a new method of SFPFSs is developed with the capacity to outsmart the efficiency of the extant SFPFSs in terms of precise results and appropriately satisfying the rules of SFs. The new method is described with some results to validate the properties of SFs. In terms of practical application, we use the newly developed method of SFPFSs to discuss the relationship between the players of the Liverpool Football Club (FC) in the 2022/2023 English Premier League (EPL) season to assess their performances in their resurgent moments within the season. Using data from BBC Sport analysis (BBCSA) on the players' rating per match in a Pythagorean fuzzy setting, we establish the players' interactions, communications, passing, contributions, and performances to ascertain the high ranking players based on performances. Similarly, a comparative analyses are presented in tables to undoubtedly express the superiority of the newly developed method of SFPFSs. Due to the flexibility of the newly developed method of SFPFSs, it can be used for clustering analysis. In addition, the new method of SFPFSs can be extended to other uncertain environments other than PFSs.

    Citation: Rongfeng Li, Paul Augustine Ejegwa, Kun Li, Iorshase Agaji, Yuming Feng, Idoko Charles Onyeke. A new similarity function for Pythagorean fuzzy sets with application in football analysis[J]. AIMS Mathematics, 2024, 9(2): 4990-5014. doi: 10.3934/math.2024242

    Related Papers:

  • The idea of Pythagorean fuzzy sets (PFSs) has been extensively applied in various decision-making scenarios. Many of the applications of PFSs were carried out based on similarity functions. Some methods of similarity functions for PFSs (SFPFSs) cannot be trusted for a reliable interpretations in practical cases due to some of their setbacks. In this work, a new method of SFPFSs is developed with the capacity to outsmart the efficiency of the extant SFPFSs in terms of precise results and appropriately satisfying the rules of SFs. The new method is described with some results to validate the properties of SFs. In terms of practical application, we use the newly developed method of SFPFSs to discuss the relationship between the players of the Liverpool Football Club (FC) in the 2022/2023 English Premier League (EPL) season to assess their performances in their resurgent moments within the season. Using data from BBC Sport analysis (BBCSA) on the players' rating per match in a Pythagorean fuzzy setting, we establish the players' interactions, communications, passing, contributions, and performances to ascertain the high ranking players based on performances. Similarly, a comparative analyses are presented in tables to undoubtedly express the superiority of the newly developed method of SFPFSs. Due to the flexibility of the newly developed method of SFPFSs, it can be used for clustering analysis. In addition, the new method of SFPFSs can be extended to other uncertain environments other than PFSs.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [3] S. K. De, R. Biswas, A. R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Set. Syst., 117 (2001), 209–213. https://doi.org/10.1016/S0165-0114(98)00235-8 doi: 10.1016/S0165-0114(98)00235-8
    [4] E. Szmidt, J. Kacprzyk, Intuitionistic fuzzy sets in some medical applications, In: Computational intelligence: theory and applications, Berlin, Heidelberg: Springer, 2001,148–151. http://doi.org/10.1007/3-540-45493-4_19
    [5] B. Davvaz, E. H. Sadrabadi, An application of intuitionistic fuzzy sets in medicine, Int. J. Biomath., 9 (2016), 1650037. https://doi.org/10.1142/S1793524516500376 doi: 10.1142/S1793524516500376
    [6] P. A. Ejegwa, I. M. Adamu, Distances between intuitionistic fuzzy sets of second type with application to diagnostic medicine, Notes on Intuitionistic Fuzzy Sets, 25 (2019), 53–70. http://doi.org/10.7546/nifs.2019.25.3.53-70 doi: 10.7546/nifs.2019.25.3.53-70
    [7] P. A. Ejegwa, C. F. Ajogwu, A. Sarkar, A hybridized correlation coefficient technique and its application in classification process under intuitionistic fuzzy setting, Iran. J. Fuzzy Syst., 20 (2023), 103–120. https://doi.org/10.22111/ijfs.2023.42888.7508 doi: 10.22111/ijfs.2023.42888.7508
    [8] S. Xu, J. Chen, J. Wu, Cluster algorithm for intuitionistic fuzzy sets, Inform. Sciences, 178 (2008), 3775–3790. https://doi.org/10.1016/j.ins.2008.06.008 doi: 10.1016/j.ins.2008.06.008
    [9] P. A. Ejegwa, I. C. Onyeke, N. Kausar, P. Kattel, A new partial correlation coefficient technique based on intuitionistic fuzzy information and its pattern recognition application, Int. J. Intell. Syst., 2023 (2023), 5540085. https://doi.org/10.1155/2023/5540085 doi: 10.1155/2023/5540085
    [10] A. G. Hatzimichailidis, A. G. Papakostas, V. G. Kaburlasos, A novel distance measure of intuitionistic fuzzy sets and its application to pattern recognition problems, Int. J. Intell. Syst., 27 (2012), 396–409. https://doi.org/10.1002/int.21529 doi: 10.1002/int.21529
    [11] P. A. Ejegwa, S. Ahemen, Enhanced intuitionistic fuzzy similarity operator with applications in emergency management and pattern recognition, Granul. Comput., 8 (2023), 361–372. https://doi.org/10.1007/s41066-022-00334-1 doi: 10.1007/s41066-022-00334-1
    [12] W. Wang, X. Xin, Distance measure between intuitionistic fuzzy sets, Pattern Recogn. Lett., 26 (2005), 2063–2069. https://doi.org/10.1016/j.patrec.2005.03.018 doi: 10.1016/j.patrec.2005.03.018
    [13] F. E. Boran, D. Akay, A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition, Inform. Sciences, 255 (2014), 45–57. https://doi.org/10.1016/j.ins.2013.08.013 doi: 10.1016/j.ins.2013.08.013
    [14] P. A. Ejegwa, J. M. Agbetayo, Similarity-distance decision-making technique and its applications via intuitionistic fuzzy pairs, Journal of Computational and Cognitive Engineering, 2 (2023), 68–74. https://doi.org/10.47852/bonviewJCCE512522514 doi: 10.47852/bonviewJCCE512522514
    [15] Y. Zhou, P. A. Ejegwa, S. E. Johnny, Generalized similarity operator for intuitionistic fuzzy sets and its applications based on recognition principle and multiple criteria decision making technique, Int. J. Comput. Intell. Syst., 16 (2023), 85. https://doi.org/10.1007/s44196-023-00245-2 doi: 10.1007/s44196-023-00245-2
    [16] P. Liu, S. M. Chen, Group decision making based on Heronian aggregation operators of intuitionistic fuzzy numbers, IEEE T. Cybernetics, 47 (2017), 2514–2530. https://doi.org/10.1109/TCYB.2016.2634599 doi: 10.1109/TCYB.2016.2634599
    [17] K. T. Atanassov, Geometrical interpretation of the elements of the intuitionistic fuzzy objects, International Journal Bioautomation 20 (2016), 27–42.
    [18] R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers and decision making, J. Intell. Fuzzy Syst., 28 (2013), 436–452. https://doi.org/10.1002/int.21584 doi: 10.1002/int.21584
    [19] P. A. Ejegwa, S. Wen, Y. Feng, W. Zhang, J. Liu, A three-way Pythagorean fuzzy correlation coefficient approach and its applications in deciding some real-life problems, Appl. Intell., 53 (2023), 226–237. https://doi.org/10.1007/s10489-022-03415-5 doi: 10.1007/s10489-022-03415-5
    [20] P. A. Ejegwa, S. Wen, Y. Feng, W. Zhang, J. Chen, Some new Pythagorean fuzzy correlation techniques via statistical viewpoint with applications to decision-making problems, J. Intell. Fuzzy Syst., 40 (2021), 9873–9886. https://doi.org/10.3233/JIFS-202469 doi: 10.3233/JIFS-202469
    [21] D. Yan, K. Wu, P. A. Ejegwa, X. Xie, Y. Feng, Pythagorean fuzzy partial correlation measure and its application, Symmetry, 15 (2023), 216. https://doi.org/10.3390/sym15010216 doi: 10.3390/sym15010216
    [22] W. Zeng, D. Li, Q. Yin, Distance and similarity measures of Pythagorean fuzzy sets and their applications to multiple criteria group decision making, J. Intell. Fuzzy Syst., 33 (2018), 2236–2254. https://doi.org/10.1002/int.22027 doi: 10.1002/int.22027
    [23] P. A. Ejegwa, I. C. Onyeke, Some new distance and similarity algorithms for Pythagorean fuzzy sets with application in decision-making problems, In: Handbook of research on advances and applications of fuzzy sets and logic, Pennsylvania: IGI Global Publisher, 2022,192–211. https://doi.org/10.4018/978-1-7998-7979-4.ch008
    [24] X. Zhang, A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making, J. Intell. Fuzzy Syst., 31 (2016), 593–611. https://doi.org/10.1002/int.21796 doi: 10.1002/int.21796
    [25] K. Wu, P. A. Ejegwa, Y. Feng, I. C. Onyeke, S. E. Johnny, S. Ahemen, Some enhanced distance measuring approaches based on Pythagorean fuzzy information with applications in decision making, Symmetry, 14 (2022), 2669. https://doi.org/10.3390/sym14122669 doi: 10.3390/sym14122669
    [26] P. A. Ejegwa, Y. Feng, S. Tang, J. M. Agbetayo, X. Dai, New Pythagorean fuzzy-based distance operators and their applications in pattern classification and disease diagnostic analysis, Neural Comput. Applic., 35 (2023), 10083–10095. https://doi.org/10.1007/s00521-022-07679-3 doi: 10.1007/s00521-022-07679-3
    [27] P. A. Ejegwa, Modified Zhang and Xu's distance measure of Pythagorean fuzzy sets and its application to pattern recognition problems, Neural Comput. Applic., 32 (2020), 10199–10208. https://doi.org/10.1007/s00521-019-04554-6 doi: 10.1007/s00521-019-04554-6
    [28] D. Li, W. Zeng, Distance measure of Pythagorean fuzzy sets, Int. J. Intell. Syst., 33 (2018), 348–361. https://doi.org/10.1002/int.21934 doi: 10.1002/int.21934
    [29] P. A. Ejegwa, Personnel appointments: A Pythagorean fuzzy sets approach using similarity measure, Journal of Information and Computing Science, 14 (2019), 94–102.
    [30] X. Peng, New similarity measure and distance measure for Pythagorean fuzzy set, Complex Intell. Syst., 5 (2019), 101–111. https://doi.org/10.1007/s40747-018-0084-x doi: 10.1007/s40747-018-0084-x
    [31] P. A. Ejegwa, New similarity measures for Pythagorean fuzzy sets with applications, Int. J. Fuzzy Computations and Modelling, 3 (2020), 75–94. http://doi.org/10.1504/IJFCM.2020.106105 doi: 10.1504/IJFCM.2020.106105
    [32] P. A. Ejegwa, Y. Zhang, H. Li, Y. Feng, Novel measuring techniques with applications in pattern classification and diagnostic process under Pythagorean fuzzy environment, The 2023 International Conference on New Trends in Computational Intelligence, Qingdao, China, 2023, 28–35.
    [33] Y. Yang, Z. S. Chen, Y. H. Chen, K. S. Chin, Interval-valued Pythagorean fuzzy Frank power aggregation operators based on an isomorphic Frank dual triple, Int. J. Comput. Int. Sys., 11 (2018), 1091–1110. https://doi.org/10.2991/ijcis.11.1.83 doi: 10.2991/ijcis.11.1.83
    [34] C. O. Nwokoro, U. G. Inyang, I. J. Eyoh, P. A. Ejegwa, Intuitionistic fuzzy approach for predicting maternal outcomes, In: Fuzzy optimization, decision-making and operations research, Cham: Springer, 2023,399–421. https://doi.org/10.1007/978-3-031-35668-1_18
    [35] P. A. Ejegwa, A. Sarkar, I. C. Onyeke, New methods of computing correlation coefficient based on Pythagorean fuzzy information and their applications in disaster control and diagnostic analysis, In: Fuzzy optimization, decision-making and operations research, Cham: Springer, 2023,473–498. https://doi.org/10.1007/978-3-031-35668-1_21
    [36] S. H. Gurmani, Z. Zhang, R. M. Zulqarnain, An integrated group decision-making technique under interval-valued probabilistic linguistic T-spherical fuzzy information and its application to the selection of cloud storage provider, AIMS Mathematics, 8 (2023), 20223–20253. https://doi.org/10.3934/math.20231031 doi: 10.3934/math.20231031
    [37] S. H. Gurmani, H. Garg, R. M. Zulqarnain, I. Siddique, Selection of unmanned aerial vehicles for precision agriculture using interval-valued q-rung orthopair fuzzy information based TOPSIS method, Int. J. Fuzzy Syst., 25 (2023), 2939–2953. https://doi.org/10.1007/s40815-023-01568-0 doi: 10.1007/s40815-023-01568-0
    [38] S. H. Gurmani, Z. Zhang, R. M. Zulqarnain, S. Askar, An interaction and feedback mechanism-based group decision-making for emergency medical supplies supplier selection using T-spherical fuzzy information, Sci. Rep., 13 (2023), 8726. https://doi.org/10.1038/s41598-023-35909-8 doi: 10.1038/s41598-023-35909-8
    [39] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [40] X. L. Zhang, Z. S. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 29 (2014), 1061–1078. https://doi.org/10.1002/int.21676 doi: 10.1002/int.21676
    [41] H. Garg, Generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-norm and t-conorm for multicriteria decision making process, Int. J. Intell. Syst., 32 (2017), 597–630. https://doi.org/10.1002/int.21860 doi: 10.1002/int.21860
    [42] L. A. P. Dominguez, L. A. Rodriguez-Picon, A. Alvarado-Iniesta, D. L. Cruz, Z. Xu, MOORA under Pythagorean fuzzy set for multiple criteria decision making, Complexity, 2018 (2018), 2602376. https://doi.org/10.1155/2018/2602376 doi: 10.1155/2018/2602376
    [43] C. Huang, M. Lin, Z. Xu, Pythagorean fuzzy MULTIMOORA method based on distance measure and score function: its application in multicriteria decision making process, Knowl. Inf. Syst., 62 (2020), 4373–4406. https://doi.org/10.1007/s10115-020-01491-y doi: 10.1007/s10115-020-01491-y
    [44] P. Wang, Y. Fu, P. Liu, B. Zhu, F. Wang, D. Pamucar, Evaluation of ecological governance in the Yellow River basin based on uninorm combination weight and MULTIMOORA-Borda method, Expert Syst. Appl., 235 (2024), 121227. https://doi.org/10.1016/j.eswa.2023.121227 doi: 10.1016/j.eswa.2023.121227
    [45] F. Gocer, G. Buyukozkan, A novel extension of Pythagorean fuzzy MULTIMOORA approach for new product development, Heliyon, 9 (2023), e16726. https://doi.org/10.1016/j.heliyon.2023.e16726 doi: 10.1016/j.heliyon.2023.e16726
    [46] M. Akram, A. Khan, U. Ahmad, Extended MULTIMOORA method based on 2-tuple linguistic Pythagorean fuzzy sets for multi-attribute group decision-making, Granul. Comput., 8 (2023), 311–332. https://doi.org/10.1007/s41066-022-00330-5 doi: 10.1007/s41066-022-00330-5
    [47] M. M. Al-Shamiri, R. Ismail, S. M. Qurashi, F. Dilawar, F. A. Shami, Multi-criteria decision-making with novel Pythagorean fuzzy aggregation operators, J. Math., 2023 (2023), 3359858. https://doi.org/10.1155/2023/3359858 doi: 10.1155/2023/3359858
    [48] W. Wang, Y. Feng, Pythagorean fuzzy multi-attribute decision making approach with incomplete weight information, Procedia Computer Science, 221 (2023), 245–252. https://doi.org/10.1016/j.procs.2023.07.034 doi: 10.1016/j.procs.2023.07.034
    [49] R. Chaurasiya, D. Jain, Hybrid MCDM method on Pythagorean fuzzy set and its application, Decision Making: Applications in Management and Engineering, 6 (2023), 379–398. https://doi.org/10.31181/dmame0306102022c doi: 10.31181/dmame0306102022c
    [50] G. Wei, Y. Wei, Similarity measures of Pythagorean fuzzy sets based on cosine function and their applications, Int. J. Intell. Syst., 33 (2018), 634–652. https://doi.org/10.1002/int.21965 doi: 10.1002/int.21965
    [51] Z. Hussain, M. S. Yang, Distance and similarity measures of Pythagorean fuzzy sets based on the Hausdorff metric with application to fuzzy TOPSIS, Int. J. Intell. Syst., 34 (2019), 2633–2654. https://doi.org/10.1002/int.22169 doi: 10.1002/int.22169
    [52] Q. Zhang, J. Hu, J. Feng, A. Liu, Y. Li, New similarity measures of Pythagorean fuzzy sets and their applications, IEEE Access, 7 (2019), 138192–138202. https://doi.org/10.1109/ACCESS.2019.2942766 doi: 10.1109/ACCESS.2019.2942766
    [53] R. Verma, J. M. Merigo, On generalized similarity measures for Pythagorean fuzzy sets and their applications to multiple attribute decision-making, Int. J. Intell. Syst., 34 (2019), 2556–2583. https://doi.org/10.1002/int.22160 doi: 10.1002/int.22160
    [54] M. Sowmiya, A. S. A. Mary, Tangent similarity measures of Pythagorean fuzzy sets, International Journal of Research Publication Review, 2 (2021), 456–462.
    [55] P. Wang, R. Dang, P. Liu, D. Pamucar, Attitude-and cost-driven consistency optimization model for decision-making with probabilistic linguistic preference relation, Comput. Ind. Eng., 186 (2023), 109748. https://doi.org/10.1016/j.cie.2023.109748 doi: 10.1016/j.cie.2023.109748
    [56] P. Wang, P. Liu, F. Chiclana, Multi-stage consistency optimization algorithm for decision making with incomplete probabilistic linguistic preference relation, Inform. Sciences, 556 (2021), 361–388. https://doi.org/10.1016/j.ins.2020.10.004 doi: 10.1016/j.ins.2020.10.004
    [57] I. C. Onyeke, P. A. Ejegwa, Modified Senapati and Yager's Fermatean fuzzy distance and its application in students' course placement in tertiary institution, In: Real life applications of multiple criteria decision making techniques in fuzzy domain, Singapore: Springer, 2023,237–253. https://doi.org/10.1007/978-981-19-4929-6_11
    [58] Y. Yang, Z. S. Chen, R. M. Rodríguez, W. Pedrycz, K. S. Chin, Novel fusion strategies for continuous interval-valued q-rung orthopair fuzzy information: A case study in quality assessment of SmartWatch appearance design, Int. J. Mach. Learn. Cyber., 13 (2022), 609–632. https://doi.org/10.1007/s13042-020-01269-2 doi: 10.1007/s13042-020-01269-2
    [59] P. A. Ejegwa, New q-rung orthopair fuzzy distance-similarity operators with applications in investment analysis, pattern recognition, clustering analysis, and selection of robot for smart manufacturing, Soft Comput., 2023 (2023), 1. https://doi.org/10.1007/s00500-023-08799-1 doi: 10.1007/s00500-023-08799-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1241) PDF downloads(60) Cited by(7)

Article outline

Figures and Tables

Figures(2)  /  Tables(16)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog