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Abstract: The idea of Pythagorean fuzzy sets (PFSs) has been extensively applied in various
decision-making scenarios. Many of the applications of PFSs were carried out based on similarity
functions. Some methods of similarity functions for PFSs (SFPFSs) cannot be trusted for a reliable
interpretations in practical cases due to some of their setbacks. In this work, a new method of SFPFSs
is developed with the capacity to outsmart the efficiency of the extant SFPFSs in terms of precise
results and appropriately satisfying the rules of SFs. The new method is described with some results
to validate the properties of SFs. In terms of practical application, we use the newly developed method
of SFPFSs to discuss the relationship between the players of the Liverpool Football Club (FC) in
the 2022/2023 English Premier League (EPL) season to assess their performances in their resurgent
moments within the season. Using data from BBC Sport analysis (BBCSA) on the players’ rating
per match in a Pythagorean fuzzy setting, we establish the players’ interactions, communications,
passing, contributions, and performances to ascertain the high ranking players based on performances.
Similarly, a comparative analyses are presented in tables to undoubtedly express the superiority of the
newly developed method of SFPFSs. Due to the flexibility of the newly developed method of SFPFSs,
it can be used for clustering analysis. In addition, the new method of SFPFSs can be extended to other
uncertain environments other than PFSs.
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1. Introduction

Football analysis is a decision-making aspect that uses data and video to analyze the performance
of players and teams by using football analytics metrics like goal threat metrics (i.e., expected
goals), creativity metrics (i.e., expected assists, shot creating actions, and goal creating actions),
and possession metrics (i.e., passes per defensive action, progressive distance, team sequences). In
a way, football analysis is a decision-making problem. Many human decision-making problems are
predominantly carried out with the aid of a decision-making method like multi-criteria decision-making
(MCDM), especially, in tasks concerning systems involving large-scale. In most cases, a decision-
making process has imprecisions and uncertainties. The fuzzy set, represented as F, was developed by
Zadeh [1] in terms of membership degree (MD), denoted by σ to offer some relief to the solution of
decision-making under uncertain conditions. But, F lacks the ability to tackle imprecision because it
does not consider non-membership degree (NMD), denoted by δ, and, hesitation parameter denoted by
η.

By incorporating δ (i.e., δ , 1−σ) and η (i.e., 1−σ−δ), Atanassov [2] developed a structure called
intuitionistic fuzzy sets (IFSs) to perfect the limitation of F, and enable the tackling of decision-making
imprecision. IFS has been industrious in many real-world problems of decision-making diagnosis
of disease [3–6], pattern and clustering analysis [7–13], and using different approaches like distance
operators, similarity operators, correlation operators, and aggregation operators to discuss various real-
life problems [14–16].

Though IFS is very applicable, there are some cases where IFSs cannot be utilized. To be
specific, when the aggregate of σ and δ exceeds unity, IFS loses its usefulness. To resolve this issue,
Atanassov [17] developed a structure called IFS of the second type, popularly known as Pythagorean
fuzzy sets (PFSs), as noted in [18]. In PFS, the aggregate of σ and δ can exceed unity with σ2+δ2 ≤ 1.
Some decision problems via the concepts of correlation operators and partial correlation operator,
under PFSs have been studied with decision-making applications [19–21]. Certain applications of
PFSs have been discussed based on similarity/distance operators for decision-making [22–25], disease
diagnosis [26], and pattern recognition [27–31]. Because of the flexibility of PFSs in the discussion
of complex real-life problems, the idea has been applied in pattern classification [32], Frank power
aggregation operators [33], predicting maternal outcomes [34], disaster control [35], and selection
process [36–38], etc.

The idea of PFSs has been applied to discuss various MCDM methods. The study of MCDM under
PFSs was initiated, and certain real-world problems were discussed via the approach used in [39].
In addition, some decision problems via MCDM were explicated under PFSs in [40, 41]. In [42],
decision making was executed under PFSs using multiobjective optimization on the basis of ratio
analysis (MOORA) for MCDM, and Huang et al. [43] used distance measure and score function under
PFSs to discuss MOORA in MCDM. Wang et al. [44] discussed a Pythagorean fuzzy (PF) MCDM
with a MOORA-Borda method in the evaluation of ecological governance. Gocer and Buyukozkan [45]
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discussed an extension of PF MULTIMOORA and used it to discuss new product development. Akram
et al. [46] also extended the PF MULTIMOORA approach via 2-tuple linguistic PFSs to discuss multi-
attribute group decision-making (MAGDM). Other PF MCDM methods were discussed in [47–49].

Moreover, SFPFSs is quite flexible and has been applied in so many areas. Wei et al. [50] developed
a method of SFPFS, based on the cosine metric and applied it to decision-making. The approach
violated the metric condition of similarity if the PFSs are indistinguishable, because instead of the
similarity being 1, the approach yields 0.3333 for n = 3, where n is the cardinality of the underlying set.
Hussain and Yang [51] constructed a similarity operator for PFSs established on the Hausdorff metric
and applied it to discuss fuzzy TOPSIS. The approach in [51] satisfies similarity metric conditions but,
does not include the hesitation margin, and hence renders the approach inappropriate. In [52], four
approaches of measuring SFPFSs were developed and while the first two do not consider the hesitation
margin, the other two considered the all of the parameters of PFSs to circumvent any error that may
stems from omission. However, the approaches yield an indistinguishable similarity value (i.e., 0.5 for
n = 2) in the case of identical PFSs, which is a violation of the metric axioms. In [53], an approach
for measuring SFPFSs, which generalized the approach in [50], was developed and applied to MCDM
problem. But, the approach yields 0.5 for n = 2 in the case of equal PFSs, which is a violation of
the metric axioms. Similarly, an approach for similarity measure between PFSs was developed in [54]
using the tangent function, but yields an inappropriate similarity value (i.e., 0.5 for n = 2) if the
PFSs are indistinguishable, which is a violation of the metric axioms and thus renders the approach
ineffective.

The itemized approaches of SFPFSs [50–54] are defective with respects to the metric conditions
of SF. The two approaches in [52] left out Pythagorean fuzzy hesitation margin (PFHM) from the
computations. The approaches in [50, 52–54] absolutely violated the metric conditions for similarity
function if the considered PFSs are identical. Although the approach in [51] satisfied the metric
conditions satisfactorily, it excludes the PFHM of the PFSs under consideration. The setbacks in these
extant methods of SFPFSs constitute the motivation for the development of a new method of SFPFS.

Oftentimes, football analysis is provided on each player immediately after a match is played, and
this analysis is mostly challenged by the coaches and football fans due to some uncertainties and
imprecisions beyond the control of the analysts. Because of the flexibility and reliability of PFSs in
curbing uncertainties and imprecisions, it is expedient to apply SFPFS to discuss football analysis. In
addition, a careful study of the applications of PFSs shows that PFSs have not been applied for the
purpose of football analysis. To this end, this paper constructs a new similarity function for PFSs with
application to football analysis using the case of the Liverpool FC in the 2022/2023 EPL season. The
study uses data from BBC Sport analysis of each of the players in some of the matches played by
Liverpool FC. The contributions of the work consist of the following;

• Construction of a new similarity function for measuring similarity between PFSs,
• Description of the new similarity function for PFSs in alliance with similarity metric conditions,
• Development of a new application area for PFSs in the analysis of the performance of Liverpool

FC in the 2022/2023 EPL season based on the MCDM method via the new similarity function,
and
• Comparative analysis of the new similarity function under PFSs with extant similarity approaches

[50–54] to authenticate the new similarity approach.

The data for the work is collected from the BBC Sport analyses for the considered number of
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matches played by the Liverpool team in the 2022/2023 EPL season. After collection, the data is
converted to PF data to enhance the encapsulation of uncertainties and imprecisions of the analysts. For
the conversion, each MD is the allocated value by the analysts, each NMD is 1 − MD from the
corresponding MD, and each HM is computed using HM = (1 − MD2 − NMD2)0.5. The structure
of the rest of the paper is as follows: Section 2 discusses some properties of PFSs, outlines some
existing similarity functions under PFSs, and identifies their setbacks; Section 3 presents the new
similarity function for PFSs and outlines its properties; Section 4 presents the new application of PFSs
in football analysis based on the new similarity function to determine the contributions of the eleven
frequently used players and, equally, presents comparative studies to showcase the preeminence of
the new similarity function over the extant similarity functions; and Section 5 recaps the paper and
provides some recommendations.

2. Preliminaries

We reiterate the idea of PFSs and some extant similarity functions between PFSs.

2.1. Pythagorean fuzzy sets

We take S to be the universe of discourse in the work.

Definition 2.1. Consider the structure

ℵ = {⟨s j, σℵ(s j), δℵ(s j)⟩ | s j ∈ S },

in which case, σℵ, δℵ : X → [0, 1] signify MD and NMD of s j ∈ S .

i) ℵ is called an IFS in S if
(
σℵ(s j)+δℵ(s j)

)
∈ [0, 1], and ηℵ(s j) = 1−σℵ(s j)−δℵ(s j) is the hesitation

margin of ℵ [2].

ii) ℵ is called a PFS in S if
(
σ2
ℵ
(s j) + δ2

ℵ
(s j)
)
∈ [0, 1], and ηℵ(s j) =

(
1 − σ2

ℵ
(s j) − δ2

ℵ
(s j)
)0.5

is the
hesitation margin of ℵ [18].

PFS ℵ can also be represented by ℵ =
(
σℵ(s j), δℵ(s j)

)
, called the Pythagorean fuzzy number (PFN).

Definition 2.2 ([18]). Assume that ℵ, ℵ1, ℵ2, and ℵ3 are PFSs in S . Then,

i) equality
ℵ1 = ℵ2 iff σℵ1(s j) = σℵ2(s j) and δℵ1(s j) = δℵ2(s j),∀s j ∈ S .

ii) inclusion
ℵ1 ⊆ ℵ2 iff σℵ1(s j) ≤ σℵ2(s j) and δℵ1(s j) ≥ δℵ2(s j),∀s j ∈ S .

iii) complement
ℵ = {⟨s j, δℵ(s j), σℵ(s j)⟩|s j ∈ S }.

iv) union
ℵ1 ∪ ℵ2 = {⟨s j,max{σℵ1(s j), σℵ2(s j)},min{δℵ1(s j), δℵ2(s j)}⟩|s j ∈ S }.

v) intersection

ℵ1 ∩ ℵ2 = {⟨s j,min{σℵ1(s j), σℵ2(s j)},max{δℵ1(s j), δℵ2(s j)}⟩|s j ∈ S }.
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Definition 2.3 ([23]). If ℵ, ℵ1, and ℵ2 are PFSs in S , then the SFPFS represented by Υ(ℵ1,ℵ2) is
Υ : PFS × PFS → [0, 1], satisfying:

i) Υ(ℵ1,ℵ2) ∈ [0, 1].
ii) Υ(ℵ1,ℵ2) = 1⇔ ℵ1 = ℵ2.

iii) Υ(ℵ1,ℵ2) = Υ(ℵ2,ℵ1).
iv) Υ(ℵ1,ℵ) ≤ Υ(ℵ1,ℵ2) + Υ(ℵ2,ℵ).

Table 1 explains the nature of the similarity function.

Table 1. Nature of Υ(ℵ1,ℵ2).
Nature Interpretations
Υ(ℵ1,ℵ2) = 0 ℵ1 and ℵ2 have no similarity
Υ(ℵ1,ℵ2) = 1 ℵ1 and ℵ2 have perfect similarity
Υ(ℵ1,ℵ2) ≈ 0 ℵ1 and ℵ2 have no significant similarity
Υ(ℵ1,ℵ2) ≈ 1 ℵ1 and ℵ2 have significant similarity

2.2. Extant methods of SFPFSs

Assume we have two PFSs

ℵ1 = {⟨s j, σℵ1(s j), δℵ1(s j)⟩|s j ∈ S }

and
ℵ2 = {⟨s j, σℵ2(s j), δℵ2(s j)⟩|s j ∈ S }

for S = {s1, s2, · · · , sk}. Let us assume:

℘1 = σℵ1(s j) − σℵ2(s j), ℘2 = δℵ1(s j) − δℵ2(s j), ℘3 = ηℵ1(s j) − ηℵ2(s j),

℘̃1 = σ
2
ℵ1

(s j) − σ2
ℵ2

(s j), ℘̃2 = δ
2
ℵ1

(s j) − δ2
ℵ2

(s j), ℘̃3 = η
2
ℵ1

(s j) − η2
ℵ2

(s j).

The following are some extant methods of finding similarity for PFSs:

1) Similarity function in [50]

Υ1(ℵ1,ℵ2) =
1
k
Σk

j=1 cos
[π
4
(
|℘̃1| + |℘̃2| + |℘̃3|

)]
. (2.1)

This method violates the rule of similarity function. For example, while computing the similarity
between ℵ1 and ℵ2 in S = {s1, s2, s3}, if ℵ1 = ℵ2, then we see that

Υ1(ℵ1,ℵ2) =
cos 0

3
= 0.3333,

which disagrees with Υ(ℵ1,ℵ2) = 1⇔ ℵ1 = ℵ2. Thus, the method [50] is not a reliable similarity
measure.

2) Similarity function in [51]

Υ2(ℵ1,ℵ2) =
1 − ∆(ℵ1,ℵ2)
1 + ∆(ℵ1,ℵ2)

, (2.2)
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where
∆(ℵ1,ℵ2) =

1
k
Σk

j=1 max{|℘̃1|, |℘̃2|}.

Though this approach fulfills the rules of the similarity function, it does not into take account the
hesitation margins. Thus, its results cannot be trusted.

3) Similarity functions in [52]

Υ3(ℵ1,ℵ2) =
1
k
Σk

j=1

[
21− 1

2

(
|℘̃1 |+|℘̃2 |

)
− 1
]
, (2.3)

Υ4(ℵ1,ℵ2) =
1
k
Σk

j=1

[
21−max{|℘̃1 |,|℘̃2 |} − 1

]
, (2.4)

Υ5(ℵ1,ℵ2) =
1
k
Σk

j=1

[
21− 1

2

(
|℘̃1 |+|B̃℘2 |+|℘̃3 |

)
− 1
]
, (2.5)

Υ6(ℵ1,ℵ2) =
1
k
Σk

j=1

[
21−max{|℘̃1 |,|℘̃2 |,|℘̃3 |} − 1

]
. (2.6)

Methods (2.3) and (2.5) are approximately the same if the values of the hesitation margins are
negligible. It is likewise for (2.4) and (2.6). The similarity approaches in (2.3) and (2.4) do not
take into account the hesitation margins, and so the approaches are not appropriate. In addition,
if ℵ1 and ℵ2 are PFSs in S = {s1, s2}, and ℵ1 = ℵ2, then (2.3)–(2.6) yield

Υ3(ℵ1,ℵ2) = Υ4(ℵ1,ℵ2) = Υ5(ℵ1,ℵ2)
Υ6(ℵ1,ℵ2) = 0.5

 ,
which contradict the similarity maxim (i.e., Υ(ℵ1,ℵ2) = 1 ⇔ ℵ1 = ℵ2). Hence, the
approaches [52] are not reliable.

4) Similarity function in [53]

Υ7(ℵ1,ℵ2) =
1
k
Σk

j=1 cos
[π
2

(
|℘̃1|

q + |℘̃2|
q + |℘̃3|

q

2

) 1
q ]
, (2.7)

where q ≥ 1 is the Lq norm. To verify the appropriateness of this function, we assume there are
two equal PFSs ℵ1 and ℵ2 in S = {s1, s2, s3}, and so (2.7) yields

Υ7(ℵ1,ℵ2) =
cos 0

3
= 0.3333, (2.8)

which contradicts the similarity maxim of separability (i.e., Υ(ℵ1,ℵ2) = 1 ⇔ ℵ1 = ℵ2). Hence,
the results from this approach cannot be reliable.

5) Similarity function in [54]

Υ8(ℵ1,ℵ2) =
1
k
Σk

j=1

[
1 − tan

π

8
(
|℘̃1| + |℘̃2|

)]
. (2.9)

The output from this approach [54] is not reliable. To see this, assume there are two equal PFSs
ℵ1 and ℵ2 in S = {s1, s2}, and so we have

Υ8(ℵ1,ℵ2) =
1
2
= 0.5,

and so Υ8(ℵ1,ℵ2) , 1. In addition, the approach also omits the hesitation margins.
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3. New similarity function for PFSs

Due to the setbacks in the discussed extant methods of SFPFSs, we are motivated to develop a new
method of SFPFSs which is well constructed without the exclusion of any parameters, satisfies the
similarity maxims, and possesses better accuracy.

Definition 3.1. Given we have two PFSs

ℵ1 = {⟨s j, σℵ1(s j), δℵ1(s j)⟩|s j ∈ S } and

ℵ2 = {⟨s j, σℵ2(s j), δℵ2(s j)⟩|s j ∈ S }

for feature space S = {s1, s2, · · · , sk}, we define the new similarity function for ℵ1 and ℵ2 as follows;

Υ(ℵ1,ℵ2) =
3k −

(
|σ2
ℵ1
− σ2

ℵ2
| + |δ2

ℵ1
− δ2
ℵ2
| + |η2

ℵ1
− η2

ℵ2
|
)

3k +
(
|σ2
ℵ1
− σ2

ℵ2
| + |δ2

ℵ1
− δ2
ℵ2
| + |η2

ℵ1
− η2

ℵ2
|
) , (3.1)

where

(
|σ2
ℵ1
−σ2

ℵ2
|+ |δ2

ℵ1
− δ2
ℵ2
|+ |η2

ℵ1
− η2
ℵ2
|
)
=

k∑
j=1

(
|σ2
ℵ1

(s j)−σ2
ℵ2

(s j)|+ |δ2
ℵ1

(s j)− δ2
ℵ2

(s j)|+ |η2
ℵ1

(s j)− η2
ℵ2

(s j)|
)
.

Now, we find the similarities between three PFSs to ascertain the superiority of the new similarity
function over the other similarity functions [50–54].

Example 3.1. Suppose there are three PFSs ℵ1, ℵ2, and ℵ3 defined in S = {s1, s2, s3} as follows;

ℵ1 = {⟨s1, 0, 1⟩, ⟨s2, 1, 0⟩, ⟨s3, 0.5, 0.7⟩},

ℵ2 = {⟨s1, 1, 0⟩, ⟨s2, 0, 1⟩, ⟨s3, 0.45, 0.68⟩},

ℵ3 = {⟨s1, 0.99, 0⟩, ⟨s2, 0.98, 0⟩, ⟨s3, 0.55, 0.69⟩}.

By using the new similarity method and the similarity methods in [50–54], we obtain Table 2.

Table 2. Results of similarity methods.
Similarity Methods (ℵ1,ℵ1) (ℵ2,ℵ2) (ℵ3,ℵ3) (ℵ1,ℵ2) (ℵ1,ℵ3) (ℵ2,ℵ3)
Υ1 [50] 0.3333 0.3333 0.3333 −0.0550 −0.2073 0.0259
Υ2 [51] 1 1 1 0.1887 0.4662 0.4563
Υ3 [52] 0.3333 0.3333 0.3333 −0.1709 −0.0098 −0.0107
Υ4 [52] 0.3333 0.3333 0.3333 −0.1721 −0.0206 −0.0266
Υ5 [52] 0.3333 0.3333 0.3333 −0.1751 −0.0206 −0.0295
Υ6 [52] 0.3333 0.3333 0.3333 −0.1721 −0.0163 −0.0180
Υ7 [53] 0.3333 0.3333 0.3333 −0.0605 −0.0810 0.2190
Υ8 [54] 0.3333 0.3333 0.3333 0.1132 0.3963 0.3363
Υ 1 1 1 0.3688 0.6094 0.5976
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The results in Table 2 show that the similarity methods in [50,52–54] could not satisfy the similarity
metric condition in the sense that, Υ(ℵ1,ℵ1) , 1, Υ(ℵ2,ℵ2) , 1, and Υ(ℵ3,ℵ3) , 1, though the PFSs
are equal. On the contrary, the new similarity method and the method in [51] fulfill this condition. In
addition, the similarity methods in [50, 52–54] yield similarity values outside the unit interval [0, 1],
which is again a violation of the similarity metric condition. In this case, we conclude that:

• the similarity methods in [50, 52–54] are not appropriate similarity methods, and
• the new similarity method yields the most accurate results by comparison to the similarity

methods in [50–54].

Next, we consider some of the properties of the new similarity function for PFSs to show its
alignment with the similarity metric conditions.

Theorem 3.1. The similarity functionΥ(ℵ1,ℵ2) of PFSsℵ1 andℵ2 in S = {s1, s2, · · · , sk} are symmetric
and separable.

Proof. To verify the symmetric nature of Υ(ℵ1,ℵ2), we show that Υ(ℵ1,ℵ2) = Υ(ℵ2,ℵ1). Thus,

Υ(ℵ1,ℵ2) =
3k −

(
|σ2
ℵ1
− σ2

ℵ2
| + |δ2

ℵ1
− δ2
ℵ2
| + |η2

ℵ1
− η2

ℵ2
|
)

3k +
(
|σ2
ℵ1
− σ2

ℵ2
| + |δ2

ℵ1
− δ2
ℵ2
| + |η2

ℵ1
− η2

ℵ2
|
)

=
3k −

(
|σ2
ℵ2
− σ2

ℵ1
| + |δ2

ℵ2
− δ2
ℵ1
| + |η2

ℵ2
− η2

ℵ1
|
)

3k +
(
|σ2
ℵ2
− σ2

ℵ1
| + |δ2

ℵ2
− δ2
ℵ1
| + |η2

ℵ2
− η2

ℵ1
|
) ,

i.e., Υ(ℵ1,ℵ2) = Υ(ℵ2,ℵ1) since

|σ2
ℵ2
− σ2

ℵ1
| = | −

(
σ2
ℵ2
− σ2

ℵ1

)
|,

|δ2
ℵ2
− δ2
ℵ1
| = | −

(
δ2
ℵ2
− δ2
ℵ1

)
|,

|η2
ℵ2
− η2

ℵ1
| = | −

(
δ2
ℵ2
− δ2
ℵ1

)
|.

Next, we verify separability, i.e., we show that Υ(ℵ1,ℵ2) = 1 iff ℵ1 = ℵ2. Suppose that Υ(ℵ1,ℵ2) = 1.
Then, we have

3k −
(
|σ2
ℵ1
− σ2

ℵ2
| + |δ2

ℵ1
− δ2
ℵ2
| + |η2

ℵ1
− η2

ℵ2
|
)
= 3k +

(
|σ2
ℵ1
− σ2

ℵ2
| + |δ2

ℵ1
− δ2
ℵ2
| + |η2

ℵ1
− η2

ℵ2
|
)
,

i.e.,

2
(
|σ2
ℵ1
− σ2

ℵ2
| + |δ2

ℵ1
− δ2
ℵ2
| + |η2

ℵ1
− η2

ℵ2
|
)
= 0.

Then, (
|σ2
ℵ1
− σ2

ℵ2
| + |δ2

ℵ1
− δ2
ℵ2
| + |η2

ℵ1
− η2

ℵ2
|
)
= 0,

which imples that σ2
ℵ1
= σ2

ℵ2
, δ2
ℵ1
= δ2

ℵ2
, and η2

ℵ1
= η2

ℵ2
. Hence, ℵ1 = ℵ2.

Conversely, if ℵ1 = ℵ2, then

|σ2
ℵ1
− σ2

ℵ2
| = 0, |δ2

ℵ1
− δ2
ℵ2
| = 0, |η2

ℵ1
− η2

ℵ2
| = 0.
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Thus,

Υ(ℵ1,ℵ2) =
3k
3k
= 1.

Theorem 3.2. The similarity function Υ(ℵ1,ℵ2) is bounded, where ℵ1 and ℵ2 are PFSs in S =
{s1, s2, · · · , sk}.

Proof. To prove boundedness, we show that Υ(ℵ1,ℵ2) is the subset of a finite interval, [0, 1]. To prove
this, we verify Υ(ℵ1,ℵ2) ≥ 0 and Υ(ℵ1,ℵ2) ≤ 1. It is easy to see that Υ(ℵ1,ℵ2) ≥ 0, because

|σ2
ℵ1
− σ2

ℵ2
| ≥ 0, |δ2

ℵ1
− δ2
ℵ2
| ≥ 0, |η2

ℵ1
− η2

ℵ2
| ≥ 0.

Next, we investigate Υ(ℵ1,ℵ2) ≤ 1. In

Υ(ℵ1,ℵ2) =
3k −

(
|σ2
ℵ1
− σ2

ℵ2
| + |δ2

ℵ1
− δ2
ℵ2
| + |η2

ℵ1
− η2

ℵ2
|
)

3k +
(
|σ2
ℵ1
− σ2

ℵ2
| + |δ2

ℵ1
− δ2
ℵ2
| + |η2

ℵ1
− η2

ℵ2
|
) ,

by letting
|σ2
ℵ1
− σ2

ℵ2
| = Fx, |δ

2
ℵ1
− δ2
ℵ2
| = Fy, |η

2
ℵ1
− η2

ℵ2
| = Fz,

we get

Υ(ℵ1,ℵ2) =
3k −

(
Fx + Fy + Fz

)
3k +

(
Fx + Fy + Fz

) .
Then,

Υ(ℵ1,ℵ2) − 1 =
3k −

(
Fx + Fy + Fz

)
3k +

(
Fx + Fy + Fz

) − 1

=
3k −

(
Fx + Fy + Fz

)
− 3k −

(
Fx + Fy + Fz

)
3k +

(
Fx + Fy + Fz

)
= −

2
(
Fx + Fy + Fz

)
3k +

(
Fx + Fy + Fz

)
≤ 0.

Thus, Υ(ℵ1,ℵ2) ≤ 1.

Theorem 3.3. Suppose ℵ1, ℵ2, and ℵ3 are PFSs in S = {s1, s2, · · · , sk} with the inclusion ℵ1 ⊆ ℵ2 ⊆ ℵ3.
Then, the new similarity function satisfies the following properties:

i) Υ(ℵ1,ℵ3) ≥ Υ(ℵ1,ℵ2) and Υ(ℵ1,ℵ3) ≥ Υ(ℵ2,ℵ3),
ii) Υ(ℵ1,ℵ3) ≥ max{Υ(ℵ1,ℵ2),Υ(ℵ2,ℵ3)},

iii) Υ(ℵ1,ℵ3) ≤ Υ(ℵ1,ℵ2) + Υ(ℵ2,ℵ3).
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Proof. i) In the light of the inclusion, we have

|σ2
ℵ1
− σ2

ℵ3
| ≥ |σ2

ℵ1
− σ2

ℵ2
|, |σ2

ℵ1
− σ2

ℵ3
| ≥ |σ2

ℵ2
− σ2

ℵ3
|,

|δ2
ℵ1
− δ2
ℵ3
| ≥ |δ2

ℵ1
− δ2
ℵ2
|, |δ2

ℵ1
− δ2
ℵ3
| ≥ |δ2

ℵ2
− δ2
ℵ3
|,

|η2
ℵ1
− η2

ℵ3
| ≥ |η2

ℵ1
− η2

ℵ2
|, |η2

ℵ1
− η2

ℵ3
| ≥ |η2

ℵ2
− η2

ℵ3
|.

Thus,

3k −
(
|σ2
ℵ1
− σ2

ℵ3
| + |δ2

ℵ1
− δ2
ℵ3
| + |η2

ℵ1
− η2

ℵ3
|
)

3k +
(
|σ2
ℵ1
− σ2

ℵ3
| + |δ2

ℵ1
− δ2
ℵ3
| + |η2

ℵ1
− η2

ℵ3
|
) ≥ 3k −

(
|σ2
ℵ1
− σ2

ℵ2
| + |δ2

ℵ1
− δ2
ℵ2
| + |η2

ℵ1
− η2

ℵ2
|
)

3k +
(
|σ2
ℵ1
− σ2

ℵ2
| + |δ2

ℵ1
− δ2
ℵ2
| + |η2

ℵ1
− η2

ℵ2
|
)

and

3k −
(
|σ2
ℵ1
− σ2

ℵ3
| + |δ2

ℵ1
− δ2
ℵ3
| + |η2

ℵ1
− η2

ℵ3
|
)

3k +
(
|σ2
ℵ1
− σ2

ℵ3
| + |δ2

ℵ1
− δ2
ℵ3
| + |η2

ℵ1
− η2

ℵ3
|
) ≥ 3k −

(
|σ2
ℵ2
− σ2

ℵ3
| + |δ2

ℵ2
− δ2
ℵ3
| + |η2

ℵ2
− η2

ℵ3
|
)

3k +
(
|σ2
ℵ2
− σ2

ℵ3
| + |δ2

ℵ2
− δ2
ℵ3
| + |η2

ℵ2
− η2

ℵ3
|
) .

Hence, Υ(ℵ1,ℵ3) ≥ Υ(ℵ1,ℵ2) and Υ(ℵ1,ℵ3) ≥ Υ(ℵ2,ℵ3).
ii) From i), it is certain that ii) holds.
iii) Given the fact that Υ(ℵ1,ℵ3) ≥ max{Υ(ℵ1,ℵ2),Υ(ℵ2,ℵ3)}, it follows that

Υ(ℵ1,ℵ3) ≥ min{Υ(ℵ1,ℵ2),Υ(ℵ2,ℵ3)},

where max{Υ(ℵ1,ℵ2),Υ(ℵ2,ℵ3)} and min{Υ(ℵ1,ℵ2),Υ(ℵ2,ℵ3)} are either Υ(ℵ1,ℵ2) or Υ(ℵ2,ℵ3),
respectively. Hence, it is certain that,

Υ(ℵ1,ℵ3) ≤ Υ(ℵ1,ℵ2) + Υ(ℵ2,ℵ3),

which implies that the similarity function satisfies the triangle inequality.

4. Analysis of Liverpool FC during the 2022/2023 EPL season based on SFPFSs

Liverpool FC is a prominent football club situated in Liverpool, England. Liverpool FC was founded
in 1892 and played its home matches at Anfield. Liverpool FC plays in EPL, the highest tier of the
English football divisions. Liverpool FC is presently managed by a German football manager called
Jurgen Klopp. The club has won several domestic titles, namely: nineteen League/EPL titles, eight FA
Cups, nine League Cups, and 16 FA Community Shields. In addition, the club has won international
titles namely: six European Cups/UEFA Leagues, three UEFA Cups, four UEFA Super Cups, and
one FIFA Club World Cup. Liverpool FC has one of the widest fans bases across the whole world in
comparison to other prominent football clubs.

4.1. Liverpool matches for the analysis

Liverpool FC performances in the 2022/2023 EPL season were inconsistent, especially during the
first half of the season due to several uncertainties, like the issue of adaptability for new players, loss
of forms, injuries, and the inability of the club to adequately replace some departing players. These
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issues dampened the players’ performances a great deal. However, Liverpool FC regained form in the
middle of the second half of the season, starting from the match Liverpool FC played with Arsenal FC
on 09/04/2023 to the match played with Aston Villa FC on 21/05/2023, covering nine matches. The
results of the matches can be seen in Table 3.

Table 3. Liverpool’s matches and scores.
Match Day Matches Fixture Place Scores Remarks
09/04/2023 Liverpool Vs Arsenal Home 2:2 Draw
17/04/2023 Leeds United Vs Liverpool Away 1:6 Win
22/04/2023 Liverpool Vs Nottingham Forest Home 3:2 Win
26/04/2023 Westham United Liverpool Away 1:2 Win
30/04/2023 Liverpool Vs Tottenham Home 4:3 Win
03/05/2023 Liverpool Vs Fulham Home 1:0 Win
06/05/2023 Liverpool Vs Brentford Home 1:0 Win
15/05/2023 Leicester City Vs Liverpool Away 0:3 Win
21/05/2023 Liverpool Vs Aston Villa Home 1:1 Draw

By denoting the matches as Mi for i = 1, 2, · · · , 9, the performance ratings of eleven frequently
used players according to BBC Sport analysis are presented in Table 4.

Table 4. Liverpool players’s ratings.
Match ratings
Players Positions M1 M2 M3 M4 M5 M6 M7 M8 M9

Alisson Goalie 5.92
10

7.27
10

6.55
10

7.12
10

6.51
10

7.17
10

7.46
10

8.08
10

5.82
10

Arnold Defender 5.63
10

7.76
10

6.77
10

7.27
10

7.00
10

7.13
10

6.10
10

8.45
10

5.45
10

Konate Defender 6.09
10

6.79
10

6.44
10 ABS 6.38

10
6.89
10

7.38
10

7.87
10

5.35
10

Van Dijk Defender 5.25
10

7.07
10

6.41
10

6.88
10

6.31
10

6.79
10

8.40
10

7.83
10

5.47
10

Robertson Defender 5.77
10

7.49
10

6.08
10

6.85
10

6.49
10

6.93
10

7.45
10

8.01
10

5.45
10

Fabinho Midfielder 5.36
10

6.83
10

6.37
10

6.85
10

6.37
10

6.63
10

7.36
10

7.73
10

5.33
10

Henderson Midfielder 5.66
10

7.28
10

6.37
10

6.76
10

6.11
10

6.58
10

6.62
10

7.66
10

5.29
10

Jones Midfielder 5.16
10

7.16
10

6.22
10

6.80
10

7.0
10

6.73
10

7.37
10

8.62
10

5.35
10

Salah Striker 5.51
10

8.18
10

7.21
10

7.01
10

7.16
10

7.20
10

7.72
10

8.16
10

5.71
10

Gakpo Striker 5.65
10

7.84
10

6.73
10

7.56
10

7.24
10

6.96
10

7.29
10

7.59
10

5.68
10

Jota Striker 5.29
10

7.94
10

7.51
10

7.11
10

7.42
10

6.72
10

7.39
10

6.99
10

5.61
10

4.2. Players’ ratings under Pythagorean fuzzy environment

Due to indecision in everyday events, the BBC Sport analysts would have definitely encountered
imprecisions while rating players. Following this, we transform the players’ ratings into PFSs. BBC
Sport analysts give analysis of every EPL match immediately after the match is played. After collecting
the data, it is converted to PF data to enhance the encapsulation of uncertainties and imprecisions of
the analysts. For the conversion, each MD is the allocated value by the analysts, each NMD is 1−MD
from the corresponding MD, and each HM is computed using HM = (1−MD2 −NMD2)0.5. By letting
the players be denoted by P j for j = 1, 2, · · · , 11, their ratings in the Pythagorean fuzzy setting can be
seen in Table 5.
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Table 5. Pythagorean fuzzy rtings.
Match ratings
Players M1 M2 M3 M4 M5 M6 M7 M8 M9

P1
( 5.92

10 ,
4.08
10

) ( 7.27
10 ,

2.73
10

) ( 6.55
10 ,

3.45
10

) ( 7.12
10 ,

2.88
10

) ( 6.51
10 ,

3.49
10

) ( 7.17
10 ,

2.83
10

) ( 7.46
10 ,

2.54
10

) ( 8.08
10 ,

1.92
10

) ( 5.82
10 ,

4.18
10

)
P2

( 5.63
10 ,

4.37
10

) ( 7.76
10 ,

2.24
10

) ( 6.77
10 ,

3.23
10

) ( 7.27
10 ,

2.73
10

) ( 7.0
10 ,

3.0
10

) ( 7.13
10 ,

2.87
10

) ( 6.1
10 ,

3.9
10

) ( 8.45
10 ,

1.55
10

) ( 5.45
10 ,

4.55
10

)
P3

( 6.09
10 ,

3.91
10

) ( 6.79
10 ,

3.21
10

) ( 6.44
10 ,

3.56
10

) ( 0
10 ,

10
10

) ( 6.38
10 ,

3.62
10

) ( 6.89
10 ,

3.11
10

) ( 7.38
10 ,

2.62
10

) ( 7.87
10 ,

2.13
10

) ( 5.35
10 ,

4.65
10

)
P4

( 5.25
10 ,

4.75
10

) ( 7.07
10 ,

2.93
10

) ( 6.41
10 ,

3.59
10

) ( 6.88
10 ,

3.12
10

) ( 6.31
10 ,

3.69
10

) ( 6.79
10 ,

3.21
10

) ( 8.40
10 ,

1.60
10

) ( 7.83
10 ,

2.17
10

) ( 5.47
10 ,

4.53
10

)
P5

( 5.77
10 ,

4.23
10

) ( 7.49
10 ,

2.51
10

) ( 6.08
10 ,

3.92
10

) ( 6.85
10 ,

3.15
10

) ( 6.49
10 ,

3.51
10

) ( 6.93
10 ,

3.07
10

) ( 7.45
10 ,

2.55
10

) ( 8.01
10 ,

1.99
10

) ( 5.45
10 ,

4.55
10

)
P6

( 5.36
10 ,

4.64
10

) ( 6.83
10 ,

3.17
10

) ( 6.37
10 ,

3.63
10

) ( 6.85
10 ,

3.15
10

) ( 6.37
10 ,

3.63
10

) ( 6.63
10 ,

3.37
10

) ( 7.36
10 ,

2.64
10

) ( 7.73
10 ,

2.27
10

) ( 5.33
10 ,

4.67
10

)
P7

( 5.66
10 ,

4.34
10

) ( 7.28
10 ,

2.72
10

) ( 6.37
10 ,

3.63
10

) ( 6.76
10 ,

3.24
10

) ( 6.11
10 ,

3.89
10

) ( 6.58
10 ,

3.42
10

) ( 6.62
10 ,

3.38
10

) ( 7.66
10 ,

2.34
10

) ( 5.29
10 ,

4.71
10

)
P8

( 5.16
10 ,

4.84
10

) ( 7.16
10 ,

2.84
10

) ( 6.22
10 ,

3.78
10

) ( 6.80
10 ,

3.20
10

) ( 7.0
10 ,

3.0
10

) ( 6.73
10 ,

3.27
10

) ( 7.37
10 ,

2.63
10

) ( 8.62
10 ,

1.38
10

) ( 5.35
10 ,

4.65
10

)
P9

( 5.51
10 ,

4.49
10

) ( 8.18
10 ,

1.82
10

) ( 7.21
10 ,

2.79
10

) ( 7.01
10 ,

2.99
10

) ( 7.16
10 ,

2.84
10

) ( 7.20
10 ,

2.80
10

) ( 7.72
10 ,

2.28
10

) ( 8.16
10 ,

1.84
10

) ( 5.71
10 ,

4.29
10

)
P10

( 5.65
10 ,

4.35
10

) ( 7.84
10 ,

2.16
10

) ( 6.73
10 ,

3.27
10

) ( 7.56
10 ,

2.44
10

) ( 7.24
10 ,

2.76
10

) ( 6.96
10 ,

3.04
10

) ( 7.29
10 ,

2.71
10

) ( 7.59
10 ,

2.41
10

) ( 5.68
10 ,

4.32
10

)
P11

( 5.29
10 ,

4.71
10

) ( 7.94
10 ,

2.06
10

) ( 7.51
10 ,

2.49
10

) ( 7.11
10 ,

2.89
10

) ( 7.42
10 ,

2.58
10

) ( 6.72
10 ,

3.28
10

) ( 7.39
10 ,

2.61
10

) ( 6.99
10 ,

3.01
10

) ( 5.61
10 ,

4.39
10

)

In Table 5, P1 represents the goalkeeper, P2, P3, P4, and P5 represent the defenders, P6, P7, and
P8 represent the midfielders, and P9, P10, and P11 represent the strikers/attackers, respectively. Now,
we establish the relationship between the players using the similarity functions (2.1)–(2.9) [50–54] and
the new similarity function (3.1).

4.2.1. Determination of relationships between goalkeeper and defenders

Here, we compute the similarities between the goalkeeper and the defenders to establish their
relationships. By computation, we get the results in Table 6.

Table 6. Goalkeeper vs. Defenders.
SF (P1,P2) (P1,P3) (P1,P4) (P1,P5)
Υ1 [50] −0.0933 0.0379 −0.0799 −0.0934
Υ2 [51] 0.8913 0.7693 0.9023 0.9485
Υ3 [52] 0.0442 −0.0126 0.0502 0.0773
Υ4 [52] 0.0604 0.0076 0.0648 0.0848
Υ5 [52] 0.0442 −0.0036 0.0502 0.0773
Υ6 [52] 0.0442 −0.0126 0.0502 0.0773
Υ7 [53] 0.0704 −0.1097 −0.1078 0.0233
Υ8 [54] −0.1026 0.124 0.1782 0.4292
Υ 0.9262 0.8401 0.9338 0.9654

The results show that the new similarity function yields the most precise outputs compare to the
other methods. Some of the extant methods [50, 52–54] yield negative results which are not defined
within the closed interval (i.e., [0, 1]), and hence they violate the rule of similarity function. From
Table 6, we see that Alisson relates more with Robertson than the rest of the defenders. The sequence
of the relationships between the goalkeeper and the defenders range from Robertson, Van Dijk, and
Alexander-Arnold to Konate.
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4.2.2. Determination of relationships among defenders

The similarities among the defenders are calculated to establish their relationships. The relationships
among the defenders can be seen in Table 7.

Table 7. Defenders vs. Defenders.
SF (P2,P3) (P2,P4) (P2,P5) (P3,P4) (P3,P5) (P4,P5)
Υ1 [50] −0.0517 0.0178 0.1105 0.0408 −0.0998 −0.1061
Υ2 [51] 0.7048 0.8326 0.8834 0.7572 0.7739 0.9175
Υ3 [52] −0.0357 0.0146 0.0399 −0.0172 −0.0108 ≈ 0
Υ4 [52] −0.0131 0.0381 0.0576 0.0049 0.0049 ≈ 0
Υ5 [52] −0.0143 0.0146 0.0399 −0.0047 −0.0017 ≈ 0
Υ6 [52] −0.0357 0.0146 0.0399 −0.0172 −0.0108 ≈ 0
Υ7 [53] 0.1111 0.0739 0.1111 −0.1093 0.0683 0.1093
Υ8 [54] 0.1446 0.0153 0.2733 −0.4328 −0.5565 0.1224
Υ 0.793 0.8852 0.9207 0.8313 0.8434 0.9442

The results in Table 7 show that the new similarity function yields satisfactory results with better
precision compared to the other methods. Again, the methods in [50, 52–54] yield negative results
which are not defined within the closed interval (i.e., [0, 1]). From Table 7, we see that Robertson
has a very good performance among the defenders. Robertson and Van Dijk have the best relationship
between themselves, followed by Robertson and Alexander-Arnold. In addition, Alexander-Arnold and
Van Dijk also have a good relationship. The least relationship among the defenders is the relationship
between Alexander-Arnold and Konate.

4.2.3. Determination of relationships between defenders and midfielders

Here, we compute the similarities between defenders and midfielders to establish their relationships.
The relationships between the defenders and the midfielders are presented in Tables 8 and 9,
respectively.

Table 8. Defenders vs. Midfielders I.
SF (P2,P6) (P2,P7) (P2,P8) (P3,P6) (P3,P7) (P3,P8)
Υ1 [50] −0.1048 −0.0769 0.0304 0.025 0.0497 0.0257
Υ2 [51] 0.8501 0.8745 0.886 0.7889 0.7571 0.7456
Υ3 [52] 0.0229 0.0353 0.0413 −0.0047 −0.0173 −0.0216
Υ4 [52] 0.0438 0.054 0.0575 0.0106 0.0153 0.005
Υ5 [52] 0.0229 0.0353 0.0413 0.0002 −0.0049 −0.0071
Υ6 [52] 0.0229 0.0353 0.0413 −0.0108 −0.0047 −0.0173
Υ7 [53] −0.1035 0.0981 0.0909 0.1093 0.0951 0.1111
Υ8 [54] −0.6365 0.0608 0.2586 0.3137 −0.2592 0.0657
Υ 0.8975 0.9146 0.9225 0.8541 0.8312 0.8229
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Table 9. Defenders vs. Midfielders II.
SF (P4,P6) (P4,P7) (P4,P8) (P5,P6) (P5,P7) (P5,P8)
Υ1 [50] 0.1103 −0.0799 −0.0791 −0.0571 −0.0832 0.0674
Υ2 [51] 0.9401 0.9023 0.9023 0.9349 0.9198 0.9232
Υ3 [52] 0.0722 0.0502 0.0502 0.691 0.0601 0.0621
Υ4 [52] 0.0834 0.0654 0.0676 0.0788 0.0723 0.0741
Υ5 [52] 0.0722 0.0502 0.0502 0.0891 0.0601 0.0621
Υ6 [52] 0.0722 0.0502 0.0502 0.0691 0.0601 0.0621
Υ7 [53] 0.0327 −0.007 0.0513 0.0514 0.0132 0.0683
Υ8 [54] 0.2221 0.2184 −0.3919 −0.0011 0.1224 0.2108
Υ 0.9597 0.9338 0.9338 0.9561 0.9458 0.9482

The results in Tables 8 and 9 show that the report on the performances of the methods in [50,
52–54] is similar to the reports in Tables 6 and 7. From Tables 8 and 9, we see that Van Dijk and
Fabinho have the best relationship in terms of passing and communications between each other. In
addition, Robertson has a good relationship with Fabinho, Henderson, and Jones in that order. The
least relationship between a defender and a midfielder is that between Konate and Jones. From the
analysis, the best contributing defenders are Robertson and Van Dijk, in that order.

4.2.4. Determination of relationships among midfielders

The relationships among the midfielders are presented in Table 10 as determined by similarity
methods.

Table 10. Midfielders vs. Midfielders.
SF (P6,P7) (P6,P8) (P7,P8)
Υ1 [50] 0.0441 0.0734 0.0586
Υ2 [51] 0.9425 0.9273 0.8947
Υ3 [52] 0.0737 0.0645 0.046
Υ4 [52] 0.0823 0.0773 0.0618
Υ5 [52] 0.0737 0.0645 0.046
Υ6 [52] 0.0737 0.0645 0.046
Υ7 [53] 0.1039 0.1093 0.0951
Υ8 [54] 0.1614 −0.2673 0.038
Υ 0.9613 0.9509 0.9286

From Table 10, we see that the new similarity function is sufficiently reliable with precise results
compared to the existing methods. It is observed that the midfielders have better relationships among
themselves. Clearly, Fabinho and Henderson have the best relationship, followed by the relationship
between Fabinho and Jones. Finally, the least relationship among the midfielders is that between
Henderson and Jones, which is also good.

4.2.5. Determination of relationships between midfielders and attackers

Here, we present the relationships between midfielders and attackers to ascertain the fluidity of the
team via similarity functions. The results are presented in Table 11.
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Table 11. Midfielders vs. Attackers.
SF (P6,P9) (P6,P10) (P6,P11) (P7,P9) (P7,P10) (P7,P11) (P8,P9) (P8,P10) (P8,P11)
Υ1 [50] 0.0877 0.1019 −0.1056 −0.074 −0.1069 0.0088 0.0282 0.00004 0.1104
Υ2 [51] 0.8546 0.8822 0.8621 0.8345 0.8757 0.8396 0.8723 0.8729 0.8558
Υ3 [52] 0.0252 0.0393 0.0289 0.0154 0.0359 0.0179 0.0341 0.0344 0.0257
Υ4 [52] 0.0457 0.0558 0.0485 0.0372 0.053 0.0383 0.053 0.0533 0.0477
Υ5 [52] 0.0252 0.0393 0.0289 0.0154 0.0359 0.0179 0.0341 0.0344 0.0257
Υ6 [52] 0.0252 0.0393 0.0289 0.0154 0.0359 0.0179 0.0341 0.0344 0.0257
Υ7 [53] −0.105 −0.1109 −0.0924 −0.0854 −0.1016 −0.1083 −0.1098 −0.1102 −0.0798
Υ8 [54] 0.0277 0.1412 0.1756 −0.1084 −0.0069 0.0262 −0.0069 0.0126 0.1297
Υ 0.9007 0.9199 0.9059 0.8865 0.9154 0.8902 0.913 0.9134 0.9015

From the results in Table 11, we see that the midfielders contribute immensely towards the winning
streak of the Liverpool FC in the EPL 2022/2023 season. However, it is necessary to note that Fabinho
is an exceptional among the midfielders in terms of contribution.

4.2.6. Determination of relationships among attackers

The relationships among the attackers are shown in Table 12 to determine the most effective
attackers.

Table 12. Attackers vs. Attackers.
SF (P9,P11) (P6,P10) (P6,P11)
Υ1 [50] 0.1101 −0.0682 0.0011
Υ2 [51] 0.9108 0.902 0.9146
Υ3 [52] 0.0549 0.05 0.0571
Υ4 [52] 0.0711 0.0669 0.0709
Υ5 [52] 0.0549 0.05 0.0571
Υ6 [52] 0.0549 0.05 0.0571
Υ7 [53] 0.1069 0.067 0.0888
Υ8 [54] 0.0763 0.5241 0.065
Υ 0.9396 0.9336 0.9422

From Table 12, we see that the attackers have a good number of goals shared among them. In fact,
they make a good use of the contributions of the midfielders. Though the attackers related well among
themselves, the relationship between Gakpo and Jota is the best.

4.2.7. Determination of the most valuable players

Here, we want to determine the most valuable players among the eleven frequently used players by
their manager. The MCDM approach is adopted for the determination process.

Algorithm for the MCDM

The following steps will be followed for the MCDM approach.
Step 1. Formulate the PFDM (Pythagorean fuzzy decision matrix) P̃ j = {Mi(P̃ j)}(m×n), where i =
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1, 2, · · · , k, j = 1, 2, · · · , l, Mi, and P̃ j represent matches and players, respectively.
Step 2. Normalize the PFDM to get the normalized PFDM denoted by

P̃ = ⟨σP̃∗j
(Mi), δP̃∗j

(Mi)⟩k×l,

where ⟨σP̃∗j
(Mi), δP̃∗j

(Mi)⟩ are PFNs, and P̃ is

⟨σP̃∗j
(Mi), δP̃∗j

(Mi)⟩ =
{
⟨σP̃ j

(Mi), δP̃ j
(Mi)⟩ for BC of P̃

⟨δP̃ j
(Mi), σP̃ j

(Mi)⟩ for CC of P̃
(4.1)

where BC and CC are the benefit criterion and cost criterion, respectively.
Step 3. Compute PIS and NIS using

P̃+ = {P̃+1 , P̃
+
2 , · · · , P̃

+
k }, P̃− = {P̃−1 , P̃

−
2 , · · · , P̃

−
k }, (4.2)

where

P̃+ =
{
⟨max{σP̃ j

(Mi)},min{δP̃ j
(Mi)}⟩, if Mi is a BC

⟨min{σP̃ j
(Mi)},max{δP̃ j

(Mi)}⟩, if Mi is a CC
(4.3)

and

P̃− =
{
⟨min{σP̃ j

(Mi)},max{δP̃ j
(Mi)}⟩, if Mi is a BC

⟨max{σP̃ j
(Mi)},min{δP̃ j

(Mi)}⟩, if Mi is a CC
(4.4)

Note that, PIS is the positive ideal solution and NIS is the negative ideal solution, respectively.
Step 4. Find the similarities Υ(P̃ j, P̃−) and Υ(P̃ j, P̃+) based on (3.1).
Step 5. Compute the closeness coefficients Θ(P̃ j) using (4.5),

Θ(P̃ j) =
Υ(P̃ j, P̃+)

Υ(P̃ j, P̃+) + Υ(P̃ j, P̃−)
, (4.5)

for j = 1, 2, · · · , k.
Step 6. Decide the maximum closeness coefficient for the analysis. The flowchart for the algorithm is
presented in Figure 1.
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Start

Formulate PFDM

Normalized the PFDM

Find PIS and NIS

Compute Υ(P̃ j, P̃−) and Υ(P̃ j, P̃+)

Compute the closeness coefficients

Decision

End

Figure 1. Flowchart for the MCDM.

Implementation

The PFDM has been presented in Table 5. The CC is M9 since it is the match where the players
have the lowest performance ratings according to BBC Sport analysts (i.e., the match played with
Aston Villa on 21/05/2023). The normalized PFDM is presented in Table 13, and the PIS and NIS are
in Table 14.
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Table 13. Normalized Pythagorean fuzzy ratings.
Match ratings
Players M1 M2 M3 M4 M5 M6 M7 M8 M9

P̃1
( 5.92

10 ,
4.08
10

) ( 7.27
10 ,

2.73
10

) ( 6.55
10 ,

3.45
10

) ( 7.12
10 ,

2.88
10

) ( 6.51
10 ,

3.49
10

) ( 7.17
10 ,

2.83
10

) ( 7.46
10 ,

2.54
10

) ( 8.08
10 ,

1.92
10

) ( 4.18
10 ,

5.82
10

)
P̃2

( 5.63
10 ,

4.37
10

) ( 7.76
10 ,

2.24
10

) ( 6.77
10 ,

3.23
10

) ( 7.27
10 ,

2.73
10

) ( 7.0
10 ,

3.0
10

) ( 7.13
10 ,

2.87
10

) ( 6.1
10 ,

3.9
10

) ( 8.45
10 ,

1.55
10

) ( 4.55
10 ,

5.45
10

)
P̃3

( 6.09
10 ,

3.91
10

) ( 6.79
10 ,

3.21
10

) ( 6.44
10 ,

3.56
10

) ( 0
10 ,

10
10

) ( 6.38
10 ,

3.62
10

) ( 6.89
10 ,

3.11
10

) ( 7.38
10 ,

2.62
10

) ( 7.87
10 ,

2.13
10

) ( 4.65
10 ,

5.35
10

)
P̃4

( 5.25
10 ,

4.75
10

) ( 7.07
10 ,

2.93
10

) ( 6.41
10 ,

3.59
10

) ( 6.88
10 ,

3.12
10

) ( 6.31
10 ,

3.69
10

) ( 6.79
10 ,

3.21
10

) ( 8.40
10 ,

1.60
10

) ( 7.83
10 ,

2.17
10

) ( 4.53
10 ,

5.47
10

)
P̃5

( 5.77
10 ,

4.23
10

) ( 7.49
10 ,

2.51
10

) ( 6.08
10 ,

3.92
10

) ( 6.85
10 ,

3.15
10

) ( 6.49
10 ,

3.51
10

) ( 6.93
10 ,

3.07
10

) ( 7.45
10 ,

2.55
10

) ( 8.01
10 ,

1.99
10

) ( 4.55
10 ,

5.45
10

)
P̃6

( 5.36
10 ,

4.64
10

) ( 6.83
10 ,

3.17
10

) ( 6.37
10 ,

3.63
10

) ( 6.85
10 ,

3.15
10

) ( 6.37
10 ,

3.63
10

) ( 6.63
10 ,

3.37
10

) ( 7.36
10 ,

2.64
10

) ( 7.73
10 ,

2.27
10

) ( 4.67
10 ,

5.33
10

)
P̃7

( 5.66
10 ,

4.34
10

) ( 7.28
10 ,

2.72
10

) ( 6.37
10 ,

3.63
10

) ( 6.76
10 ,

3.24
10

) ( 6.11
10 ,

3.89
10

) ( 6.58
10 ,

3.42
10

) ( 6.62
10 ,

3.38
10

) ( 7.66
10 ,

2.34
10

) ( 4.71
10 ,

5.29
10

)
P̃8

( 5.16
10 ,

4.84
10

) ( 7.16
10 ,

2.84
10

) ( 6.22
10 ,

3.78
10

) ( 6.80
10 ,

3.20
10

) ( 7.0
10 ,

3.0
10

) ( 6.73
10 ,

3.27
10

) ( 7.37
10 ,

2.63
10

) ( 8.62
10 ,

1.38
10

) ( 4.65
10 ,

5.35
10

)
P̃9

( 5.51
10 ,

4.49
10

) ( 8.18
10 ,

1.82
10

) ( 7.21
10 ,

2.79
10

) ( 7.01
10 ,

2.99
10

) ( 7.16
10 ,

2.84
10

) ( 7.20
10 ,

2.80
10

) ( 7.72
10 ,

2.28
10

) ( 8.16
10 ,

1.84
10

) ( 4.29
10 ,

5.71
10

)
P̃10

( 5.65
10 ,

4.35
10

) ( 7.84
10 ,

2.16
10

) ( 6.73
10 ,

3.27
10

) ( 7.56
10 ,

2.44
10

) ( 7.24
10 ,

2.76
10

) ( 6.96
10 ,

3.04
10

) ( 7.29
10 ,

2.71
10

) ( 7.59
10 ,

2.41
10

) ( 4.32
10 ,

5.68
10

)
P̃11

( 5.29
10 ,

4.71
10

) ( 7.94
10 ,

2.06
10

) ( 7.51
10 ,

2.49
10

) ( 7.11
10 ,

2.89
10

) ( 7.42
10 ,

2.58
10

) ( 6.72
10 ,

3.28
10

) ( 7.39
10 ,

2.61
10

) ( 6.99
10 ,

3.01
10

) ( 4.39
10 ,

5.61
10

)

Table 14. PIS and NIS.
PIS/NIS M1 M2 M3 M4 M5 M6 M7 M8 M9

P̃+
( 6.09

10 ,
3.91
10

) ( 8.18
10 ,

1.82
10

) ( 7.51
10 ,

2.49
10

) ( 7.56
10 ,

2.44
10

) ( 7.42
10 ,

2.58
10

) ( 7.2
10 ,

2.8
10

) ( 8.4
10 ,

1.6
10

) ( 8.62
10 ,

1.38
10

) ( 4.18
10 ,

5.82
10

)
P̃−

( 5.16
10 ,

4.84
10

) ( 6.79
10 ,

3.21
10

) ( 6.08
10 ,

3.92
10

) ( 0
10 ,

1
10

) ( 6.11
10 ,

3.89
10

) ( 6.58
10 ,

3.42
10

) ( 6.1
10 ,

3.9
10

) ( 6.99
10 ,

3.01
10

) ( 4.71
10 ,

5.29
10

)

We observe that P̃+ and P̃− represent the best and worst ratings of the players in each matchday,
respectively.

Next, we compute the similarities of (P̃ j, P̃+) and (P̃ j, P̃−) based on (3.1), and Table 15 contains the
results.

Table 15. Similarities for (P̃ j, P̃+) and (P̃ j, P̃−).
Players Υ(P̃ j, P̃+) Υ(P̃ j, P̃−)
P̃1 0.8757 0.8135
P̃2 0.8836 0.8162
P̃3 0.7541 0.7901
P̃4 0.8635 0.832
P̃5 0.8628 0.8328
P̃6 0.8367 0.862
P̃7 0.8286 0.8707
P̃8 0.8674 0.8305
P̃9 0.9188 0.7767
P̃10 0.892 0.8047
P̃11 0.8851 0.8098

Using the information in Table 15, we get the closeness coefficients in Table 16, which is represented
in Figure 2.
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Table 16. Closeness coefficients.
Players Θ(P̃ j) Ranking
P̃1 0.5184 Fifth
P̃2 0.5198 Fourth
P̃3 0.4883 Tenth
P̃4 0.5093 Seventh
P̃5 0.5088 Eighth
P̃6 0.4926 Ninth
P̃7 0.4876 Eleventh
P̃8 0.5109 Sixth
P̃9 0.5419 First
P̃10 0.5257 Second
P̃11 0.5222 Third

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10P11

0.5

0.52

0.54

Players

C
lo

se
ne

ss
C

oe
ffi

ci
en

ts

Figure 2. Closeness coefficients of the players.

From the ranking in Table 16 and Figure 2, we see that the player that contributes most to the
overall performance of the club in the EPL 2022/2023 season is Salah. He is followed by Gakpo,
Jota, Alexander-Arnold, Alisson, Jones, Van Dijk, Robertson, Fabinho, Konate, and Henderson,
respectively. Overall, all the players (including the less featured ones due to forms and injuries)
contributed immensely to the resurgency of the club towards the end of the EPL season. We recommend
that, the club should ensure the high ranked players are given contract renewal/extension to enable them
to contribute more in the forthcoming seasons.

4.3. Practical implications of the players’ similarity analysis

Table 6 indicates that Alisson and Robertson have a closer relationship than the other defenders.
The order of the relationships between the goalie and the defenders range from Robertson, Van Dijk,
and Alexander-Arnold to Konate. Table 7 shows that, out of all the defenders, Robertson performs
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exceptionally well. The strongest bond between Robertson and Van Dijk is followed by that between
Robertson and Alexander-Arnold. Furthermore, Van Dijk and Alexander-Arnold get along well. The
relationship between Alexander-Arnold and Konate is the least strong among the defenders. Van Dijk
and Fabinho have the best relationship when it comes to passing and communication between them, as
shown by Tables 8 and 9. Furthermore, Robertson gets along well with Jones, Henderson, and Fabinho,
in that order. Konate and Jones have the least relationship of any defender and midfielder. According
to the analysis, Van Dijk and Robertson are the two best contributing defenders, in that order.

It has been noted that the relationships amongst the midfielders are better. It is obvious that the
relationship between Fabinho and Jones is superior to that of Fabinho and Henderson. Last but not
least, Henderson and Jones have the least relationship of any midfield player, which is also positive.
According to Table 11, midfield players had a significant impact on Liverpool FC’s winning streak in
the EPL 2022/2023 season. But, it is important to recognize that Fabinho stands out among the midfield
players in terms of his contributions. Table 12 indicates that there is a considerable goal distribution
among the attackers. In actuality, they effectively utilize the midfielders’ contributions. Even though
the attackers get along well with one another, Gakpo and Jota have the best relationship.

From the PF MCDM method based on similarity function, we see that the overall players
performances are ranked as follows: Salah, Gakpo, Jota, Alexander-Arnold, Alisson, Jones, Van
Dijk, Robertson, Fabinho, Konate, and Henderson, respectively. In this approach, the possibility
of uncertainties and imprecisions are reliably curbed. Based on the classical approach, which is
obtained by summing the player ratings in the nine matches as provided by the BBC Sport analysts, the
overall players performances are ranked as follows: Salah, Gakpo, Jota, Alisson, Alexander-Arnold,
Robertson, Van Dijk and Jones (tied), Fabinho, Henderson, and Konate, respectively.

We observe that there are no ties in the PF MCDM-based similarity function, whereas ties exists
using the classical approach. Though Konate missed matchday 4, he still ranked better than Henderson
using the PF MCDM-based similarity function, but that is not the case with the classical approach.
By the PF MCDM-based similarity function, Alexander-Arnold ranked better than Alisson, and Jones
and Van Dijk ranked better than Robertson against the rankings via the classical approach. These
discrepancies are observed in the classical case because the PF MCDM-based similarity function
curbed the uncertainties, indecisions, and imprecisions encountered by the BBC Sport analysts. For a
reliable football analysis, we strongly recommend the use of the PF MCDM-based similarity function
ahead of the classical approach.

5. Conclusions

In this paper, a new method of SFPFSs is developed and applied in the analysis of football matches
played by Liverpool FC in the EPL 2022/2023 season. The motivation for the development of this
similarity function is because of the limitations of the extant methods of SFPFSs, which include
lack of precision, inability to satisfy similarity conditions, omission of the PFHM, and unreliable
interpretations in practical cases. These limitations are justified by presenting comparative analyses
of the new similarity function versus the extant similarity functions under the Pythagorean fuzzy
domain, from which it is certain that the newly developed function outperforms the existing functions.
Some theoretic properties of the newly developed similarity function are discussed to showcase its
alignment with the similarity conditions. In addition, the new similarity function is used to discuss
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the relationships that exist among the players of Liverpool FC in the EPL 2022/2023 season in terms
of passing, communications, contributions, and performances based on the recognition principle and
the MCDM approach by using the players’ rating data from BBC Sport analysts in nine consecutive
matches. The analyses of the contributions of the players show that the performances of the players
are ranked as follows: Salah, Gakpo, Jota, Alexander-Arnold, Alisson, Jones, Van Dijk, Robertson,
Fabinho, Konate, and Henderson, respectively. In addition, it is observed that the MCDM approach
yields more reliable results compared to the recognition principle and the classical approach. This
application of similarity function for PFSs in football analysis is the first of its kind within the fuzzy
domain. The new method of SFPFSs is limited, in the sense that it cannot be directly applicable in
other variants of fuzzy set like Fermatean fuzzy sets, q-rung orthopair fuzzy sets, and picture fuzzy
sets, etc. without modifications. This is because the new method was not constructed to incorporate
the properties of these sets. The newly developed similarity function and the novel application are
recommended to be studied in other higher variants of fuzzy sets in the future. Specifically, the new
similarity function can be applied to the evaluation of ecological governance [44], attitude and cost-
driven consistency optimization models [55], multi-stage consistency optimization algorithms [56],
and other real-life problems [57–59].
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