Research article

Global dynamics of a delayed model with cytokine-enhanced viral infection and cell-to-cell transmission

  • Received: 10 March 2024 Revised: 23 April 2024 Accepted: 30 April 2024 Published: 09 May 2024
  • MSC : 34D23, 92D30

  • Recent studies have demonstrated the superiority of cell-to-cell transmission over cell-free virus infection, and highlighted the role of inflammatory cytokines in enhancing viral infection. To investigate their impacts on viral infection dynamics, we have proposed an HIV infection model incorporating general incidence rates, these infection modes, and two time delays. We derived the basic reproduction number and showed that it governs the existence and local stability of steady states. Through the construction of appropriate Lyapunov functionals and application of the LaSalle invariance principle, we established the global asymptotic stability of both the infection-free and infected steady states.

    Citation: Liang Hong, Jie Li, Libin Rong, Xia Wang. Global dynamics of a delayed model with cytokine-enhanced viral infection and cell-to-cell transmission[J]. AIMS Mathematics, 2024, 9(6): 16280-16296. doi: 10.3934/math.2024788

    Related Papers:

  • Recent studies have demonstrated the superiority of cell-to-cell transmission over cell-free virus infection, and highlighted the role of inflammatory cytokines in enhancing viral infection. To investigate their impacts on viral infection dynamics, we have proposed an HIV infection model incorporating general incidence rates, these infection modes, and two time delays. We derived the basic reproduction number and showed that it governs the existence and local stability of steady states. Through the construction of appropriate Lyapunov functionals and application of the LaSalle invariance principle, we established the global asymptotic stability of both the infection-free and infected steady states.



    加载中


    [1] Y. Jiang, T. Zhang, Global stability of a cytokine-enhanced viral infection model with nonlinear incidence rate and time delays, Appl. Math. Lett., 132 (2022), 108110. https://doi.org/10.1016/j.aml.2022.108110 doi: 10.1016/j.aml.2022.108110
    [2] W. Wang, T. Zhang, Caspase-1-mediated pyroptosis of the predominance for driving CD4+ T cells death: A nonlocal spatial mathematical model, B. Math. Biol., 80 (2018), 540–582. https://doi.org/10.1007/s11538-017-0389-8 doi: 10.1007/s11538-017-0389-8
    [3] G. Doitsh, N. L. K. Galloway, X. Geng, Z. Yang, K. M. Monroe, O. Zepedaet, et al., Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection, Nature, 505 (2014), 509–514. https://doi.org/10.1038/nature12940 doi: 10.1038/nature12940
    [4] J. Xu, Dynamic analysis of a cytokine-enhanced viral infection model with infection age, Math. Biosci. Eng., 20 (2023), 8666–8684. https://doi.org/10.3934/mbe.2023380 doi: 10.3934/mbe.2023380
    [5] T. Guo, Z. Qiu, L. Rong, Modeling the role of macrophages in HIV persistence during antiretroviral therapy, J. Math. Biol., 81 (2020), 369–402. https://doi.org/10.1007/s00285-020-01513-x doi: 10.1007/s00285-020-01513-x
    [6] Y. Yang, G. Huang, Y. Dong, Stability and Hopf bifurcation of an HIV infection model with two time delays, Math. Biosci. Eng., 20 (2022), 1938–1959. https://doi.org/10.3934/mbe.2023089 doi: 10.3934/mbe.2023089
    [7] J. Wang, H. Shi, L. Xu, L. Zang, Hopf bifurcation and chaos of tumor-Lymphatic model with two time delays, Chaos Soliton. Fract., 157 (2022), 111922. https://doi.org/10.1016/j.chaos.2022.111922 doi: 10.1016/j.chaos.2022.111922
    [8] M. L. M. Manyombe, J. Mbang, G. Chendjou, Stability and Hopf bifurcation of a CTL inclusive HIV-1 infection model with both viral and cellular infections, and three delays, Chaos Soliton. Fract., 144 (2021), 110695. https://doi.org/10.1016/j.chaos.2021.110695 doi: 10.1016/j.chaos.2021.110695
    [9] Y. Yang, T. Zhang, J. Zhou, Global attractivity of a time-delayed viral infection model with spatial heterogeneity, Appl. Math. Lett., 116 (2021), 107035. https://doi.org/10.1016/j.aml.2021.107035 doi: 10.1016/j.aml.2021.107035
    [10] T. Zheng, Y. Luo, Z. Teng, Spatial dynamics of a viral infection model with immune response and nonlinear incidence, Z. Angew. Math. Phys., 74 (2023), 124. https://doi.org/10.1007/s00033-023-02015-8 doi: 10.1007/s00033-023-02015-8
    [11] X. Wang, S. Tang, X. Song, L. Rong, Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission, J. Biol. Dynam., 11 (2017), 455–483. https://doi.org/10.1080/17513758.2016.1242784 doi: 10.1080/17513758.2016.1242784
    [12] Y. Luo, L. Zhang, T. Zheng, Z. Teng, Analysis of a diffusive virus infection model with humoral immunity, cell-to-cell transmission and nonlinear incidence, Phys. A, 535 (2019), 122415. https://doi.org/10.1016/j.physa.2019.122415 doi: 10.1016/j.physa.2019.122415
    [13] J. Wang, C. Qin, Y. Chen, X. Wang, Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays, Math. Biosci. Eng., 16 (2019), 2587–2612. https://doi.org/10.3934/mbe.2019130 doi: 10.3934/mbe.2019130
    [14] J. Wang, R. Zhang, A note on the global dynamics for a diffusive foot-and-mouth disease model, Appl. Math. Lett., 145 (2023), 108737. https://doi.org/10.1016/j.aml.2023.108737 doi: 10.1016/j.aml.2023.108737
    [15] X. Wang, Y. Chen, S. Liu, Global dynamics of a vector-borne disease model with infection ages and general incidence rates, Comput. Appl. Math., 37 (2018), 4055–4080. https://doi.org/10.1007/S40314-017-0560-8 doi: 10.1007/S40314-017-0560-8
    [16] X. Wang, Y. Lou, X. Song, Age-structured within-host HIV dynamics with multiple target cells, Stud. Appl. Math., 138 (2016), 43–76. https://doi.org/10.1111/sapm.12135 doi: 10.1111/sapm.12135
    [17] X. Wang, Y. Chen, M. Martcheva, L. Rong, Asymptotic analysis of a vector-borne disease model with the age of infection, J. Biol. Dynam., 14 (2020), 332–367. https://doi.org/10.1080/17513758.2020.1745912 doi: 10.1080/17513758.2020.1745912
    [18] X. Wang, Z. Zhang, C. Jia, A SEIARV model with asymptomatic infection and saturation rates, J. Xinyang Norm. Univ., 36 (2023), 16–21. https://doi.org/10.3969/j.issn.1003-0972.2023.01.003 doi: 10.3969/j.issn.1003-0972.2023.01.003
    [19] A. Kumar, Dynamic behavior of an SIR epidemic model along with time delay; Crowley-Martin type incidence rate and Holling type Ⅱ treatment rate, Int. J. Nonlin. Sci. Num., 20 (2019), 757–771. https://doi.org/10.1515/ijnsns-2018-0208 doi: 10.1515/ijnsns-2018-0208
    [20] L. Shi, L. Wang, L. Zhu, D. Anwarud, Dynamics of an infection-age HIV diffusive model with latent infected cell and Beddington-DeAngelis infection incidence, Eur. Phys. J. Plus., 137 (2022), 212. https://doi.org/10.1140/epjp/s13360-022-02428-w doi: 10.1140/epjp/s13360-022-02428-w
    [21] X. Zhou, J. Cui, Global stability of the viral dynamics with Crowley-Martin functional response, B. Korean Math. Soc., 48 (2011), 555–574. https://doi.org/10.4134/BKMS.2011.48.3.555 doi: 10.4134/BKMS.2011.48.3.555
    [22] X. Zhao, The linear stability and basic reproduction numbers for autonomous FDEs, Discrete. Cont. Dyn.-S, 17 (2024), 708–719. https://doi.org/10.3934/dcdss.2023082 doi: 10.3934/dcdss.2023082
    [23] X. Wang, J. Li, A ZIKV infection model with vaccination and standard incidence rate, J. Xinyang Norm. Univ., 37 (2024), 51–55. https://doi.org/10.3969/j.issn.1003-0972.2024.01.008 doi: 10.3969/j.issn.1003-0972.2024.01.008
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(572) PDF downloads(39) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog