Originally developed within the realm of mathematical physics, integral transformations have transcended their origins and now find wide application across various mathematical domains. Among these applications, the construction and analysis of special polynomials benefit significantly from the elucidation of generating expressions, operational principles, and other distinctive properties. This study delves into a pioneering exploration of an extended lineage of Frobenius-Euler polynomials belonging to the Hermite-Apostol type, incorporating multivariable variables through fractional operators. Motivated by the exigencies of contemporary engineering challenges, the research endeavors to uncover the operational rules and establishing connections inherent within these extended polynomials. In doing so, it seeks to chart a course towards harnessing these mathematical constructs within diverse engineering contexts, where their unique attributes hold the potential for yielding profound insights. The study deduces operational rules for this generalized family, facilitating the establishment of generating connections and the identification of recurrence relations. Furthermore, it showcases compelling applications, demonstrating how these derived polynomials may offer meaningful solutions within specific engineering scenarios.
Citation: Mohra Zayed, Shahid Ahmad Wani, Georgia Irina Oros, William Ramŕez. A study on extended form of multivariable Hermite-Apostol type Frobenius-Euler polynomials via fractional operators[J]. AIMS Mathematics, 2024, 9(6): 16297-16312. doi: 10.3934/math.2024789
Originally developed within the realm of mathematical physics, integral transformations have transcended their origins and now find wide application across various mathematical domains. Among these applications, the construction and analysis of special polynomials benefit significantly from the elucidation of generating expressions, operational principles, and other distinctive properties. This study delves into a pioneering exploration of an extended lineage of Frobenius-Euler polynomials belonging to the Hermite-Apostol type, incorporating multivariable variables through fractional operators. Motivated by the exigencies of contemporary engineering challenges, the research endeavors to uncover the operational rules and establishing connections inherent within these extended polynomials. In doing so, it seeks to chart a course towards harnessing these mathematical constructs within diverse engineering contexts, where their unique attributes hold the potential for yielding profound insights. The study deduces operational rules for this generalized family, facilitating the establishment of generating connections and the identification of recurrence relations. Furthermore, it showcases compelling applications, demonstrating how these derived polynomials may offer meaningful solutions within specific engineering scenarios.
[1] | G. Dattotli, S. Lorenzutta, C. Cesarano, Bernstein polynomials and operational methods, J. Comput. Anal. Appl., 8 (2006), 369–377. |
[2] | G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, In: D. Cocolicchio, G. Dattoli, H. M. Srivastava, Advanced special functions and applications, Melfi, May 9–12, 1999, Rome: Aracne Editrice, 2000,147–164. |
[3] | T. Nahid, J. Choi, Certain hybrid matrix polynomials related to the Laguerre-Sheffer family, Fractal Fract., 6 (2022), 211. https://doi.org/10.3390/fractalfract6040211 doi: 10.3390/fractalfract6040211 |
[4] | S. A. Wani, K. Abuasbeh, G. I. Oros, S. Trabelsi, Studies on special polynomials involving degenerate Appell polynomials and fractional derivative, Symmetry, 15 (2023), 840. https://doi.org/10.3390/sym15040840 doi: 10.3390/sym15040840 |
[5] | R. Alyusof, S. A. Wani, Certain properties and applications of $\Delta_h$ hybrid special polynomials associated with Appell sequences, Fractal Fract., 7 (2023), 233. https://doi.org/10.3390/fractalfract7030233 doi: 10.3390/fractalfract7030233 |
[6] | H. M. Srivastava, G. Yasmin, A. Muhyi, S. Araci, Certain results for the twice-iterated 2D $q$-Appell polynomials, Symmetry, 11 (2019), 1307. https://doi.org/10.3390/sym11101307 doi: 10.3390/sym11101307 |
[7] | A. M. Obad, A. Khan, K. S. Nisar, A. Morsy, $q$-binomial convolution and transformations of $q$-Appell polynomials, Axioms, 10 (2021), 70. https://doi.org/10.3390/axioms10020070 doi: 10.3390/axioms10020070 |
[8] | D. Bedoya, O. Ortega, W. Ramírez, U. Urieles, New biparametric families of Apostol-Frobenius- Euler polynomials of level $m$, Mat. Stud., 55 (2021), 10–23. https://doi.org/10.30970/ms.55.1.10-23 doi: 10.30970/ms.55.1.10-23 |
[9] | N. Kılar, Y. Simsek, Combinatorial sums involving Fubini type numbers and other special numbers and polynomials: approach trigonometric functions and $p$-adic integrals, Adv. Stud. Contemp. Math., 31 (2021), 75–87. |
[10] | N. Kılar, Y. Simsek, Identities and relations for Hermite-based Milne-Thomson polynomials associated with Fibonacci and Chebyshev polynomials, RACSAM, 115 (2021), 28. https://doi.org/10.1007/s13398-020-00968-3 doi: 10.1007/s13398-020-00968-3 |
[11] | N. Kılar, Y. Simsek, A note on Hermite-based Milne Thomson type polynomials involving Chebyshev polynomials and other polynomials, Sci. J. Mehmet Akif Ersoy Univ., 3 (2020), 8–14. |
[12] | Y. Simsek, Formulas for Poisson-Charlier, Hermite, Milne-Thomson and other type polynomials by their generating functions and $p$-adic integral approach, RACSAM, 113 (2019), 931–948. https://doi.org/10.1007/s13398-018-0528-6 doi: 10.1007/s13398-018-0528-6 |
[13] | Y. Simsek, N. Cakic, Identities associated with Milne-Thomson type polynomials and special numbers, J. Inequal. Appl., 2018 (2018), 84. https://doi.org/10.1186/s13660-018-1679-x doi: 10.1186/s13660-018-1679-x |
[14] | R. Dere, Y. Simsek, Hermite base Bernoulli type polynomials on the umbral algebra, Russ. J. Math. Phys., 22 (2015), 1–5. https://doi.org/10.1134/S106192081501001X doi: 10.1134/S106192081501001X |
[15] | G. Dattoli, Generalized polynomials operational identities and their applications, J. Comput. Appl. Math., 118 (2000), 111–123. https://doi.org/10.1016/S0377-0427(00)00283-1 doi: 10.1016/S0377-0427(00)00283-1 |
[16] | P. Appell, J. K. de Fériet, Fonctions hyperg${\acute{e}}$om${\acute{e}}$triques et hypersph${\acute{e}}$riques: polyn${\hat{o}}$mes d'Hermite, Paris: Gauthier-Villars, 1926. |
[17] | L. C. Andrews, Special functions for engineers and applied mathematicians, New York: Macmillan Publishing Company, 1985. |
[18] | G. Dattoli, Summation formulae of special functions and multivariable Hermite polynomials, Nuovo Cimento-B, 119B (2004), 479–488. https://doi.org/10.1393/ncb/i2004-10111-1 doi: 10.1393/ncb/i2004-10111-1 |
[19] | M. A. Özarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 62 (2011), 2452–2462. https://doi.org/10.1016/j.camwa.2011.07.031 doi: 10.1016/j.camwa.2011.07.031 |
[20] | Q. M. Luo, Apostol-Euler polynomials of higher order and the Gaussian hypergeometric function, Taiwanese J. Math., 10 (2006), 917–925. https://doi.org/10.11650/twjm/1500403883 doi: 10.11650/twjm/1500403883 |
[21] | A. Erd${\rm\acute e}$lyi, Higher transcendental functions, McGraw-Hill Book Company, 1955. |
[22] | L. Carlitz, Eulerian numbers and polynomials, Math. Mag., 32 (1959), 247–260. https://doi.org/10.2307/3029225 doi: 10.2307/3029225 |
[23] | K. B. Oldham, J. Spanier, The fractional calculas, Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, 1974. |
[24] | D. V. Widder, An introduction to transform theory, New York: Academic Press, 1971. |
[25] | G. Dattoli, P. E. Ricci, C. Cesarano, L. Vázquez, Special polynomials and fractional calculus, Math. Comput. Modell., 37 (2003), 729–733. https://doi.org/10.1016/S0895-7177(03)00080-3 doi: 10.1016/S0895-7177(03)00080-3 |
[26] | D. Assante, C. Cesarano, C. Fornaro, L. Vazquez, Higher order and fractional diffusive equations, J. Eng. Sci. Technol. Rev., 8 (2015), 202–204. https://doi.org/10.25103/JESTR.085.25 doi: 10.25103/JESTR.085.25 |
[27] | J. F. Steffensen, The poweriod, an extension of the mathematical notion of power, Acta. Math., 73 (1941), 333–366. |
[28] | B. Kurt, Y. Simsek, Frobenius-Euler type polynomials related to Hermite-Bernoulli polyomials, AIP Conf. Proc., 1389 (2011), 385–388. https://doi.org/10.1063/1.3636743 doi: 10.1063/1.3636743 |
[29] | Y. Simsek, Generating functions for $q$-Apostol type Frobenius-Euler numbers and polynomials, Axioms, 1 (2012), 395–403. https://doi.org/10.3390/axioms1030395 doi: 10.3390/axioms1030395 |
[30] | D. S. Kim, T. Kim, Some new identities of Frobenius-Euler numbers and polynomials, J. Inequal. Appl., 307 (2012), 307. https://doi.org/10.1186/1029-242X-2012-307 doi: 10.1186/1029-242X-2012-307 |