In this article, we study totally real submanifolds in Kaehler product manifold with constant scalar curvature using self-adjoint differential operator $ \Box $. Under this setup, we obtain a characterization result. Moreover, we discuss $ \delta- $invariant properties of such submanifolds and get an obstruction result as an application of the inequality derived. The results in the article are supported by non-trivial examples.
Citation: Mohd. Aquib, Amira A. Ishan, Meraj Ali Khan, Mohammad Hasan Shahid. A characterization for totally real submanifolds using self-adjoint differential operator[J]. AIMS Mathematics, 2022, 7(1): 104-120. doi: 10.3934/math.2022006
In this article, we study totally real submanifolds in Kaehler product manifold with constant scalar curvature using self-adjoint differential operator $ \Box $. Under this setup, we obtain a characterization result. Moreover, we discuss $ \delta- $invariant properties of such submanifolds and get an obstruction result as an application of the inequality derived. The results in the article are supported by non-trivial examples.
[1] | A. H. Alkhaldi, A. Ali, Geometry of bi-warped product submanifolds of nearly trans-Sasakian manifolds, Mathematics, 9 (2021), 847. doi: 10.3390/math9080847. doi: 10.3390/math9080847 |
[2] | N. Alluhaibi, A. Ali, I. Ahmad, On differential equations characterizing Legendrian submanifolds of Sasakian space forms, Mathematics, 8 (2020), 150. doi: 10.3390/math8020150. doi: 10.3390/math8020150 |
[3] | M. Aquib, J. W. Lee, G. E. Vilcu, D. W. Yoon, Classification of Casorati ideal Lagrangian submanifolds in complex space forms, Differ. Geom. Appl., 63 (2019), 30–49. doi: 10.1016/j.difgeo.2018.12.006. doi: 10.1016/j.difgeo.2018.12.006 |
[4] | M. Atceken, CR-submanifolds of Kaehlerian product manifolds, Balk. J. Geom. Appl., 12 (2007), 8–20. doi: 10.1142/9789812708908_0018. doi: 10.1142/9789812708908_0018 |
[5] | M. Atceken, S. Keles, On the CR-submanifolds of Kaehler product manifolds, Differ. Geom. Dyn. Sys., 10 (2008), 21–31. |
[6] | D. Blair, On the geometric meaning of the Bochner tensor, Geometriae Dedicata, 4 (1975), 33–38. doi: 10.1007/BF00147399. doi: 10.1007/BF00147399 |
[7] | B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math., 60 (1993), 568–578. doi: 10.1007/BF01236084. doi: 10.1007/BF01236084 |
[8] | B. Y. Chen, Some new obstruction to minimal and Lagrangian isometric immersions, Jpn. J. Math., 26 (1993), 105–127. doi: 10.4099/math1924.26.105. doi: 10.4099/math1924.26.105 |
[9] | B. Y. Chen, Riemannian geometry of Lagrangian submanifolds, Taiwan. J. Math., 5 (2001), 681–723. doi: 10.11650/twjm/1500574989. doi: 10.11650/twjm/1500574989 |
[10] | B. Y. Chen, K. Ogiue, On totally real submanifolds, T. Am. Math. Soc., 193 (1974), 257–266. doi: 10.2307/1996914. doi: 10.2307/1996914 |
[11] | S. Y. Cheng, S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195–204. doi: 10.1007/BF01425237. doi: 10.1007/BF01425237 |
[12] | S. S. Chern, M. P. do Carmo, S. Kobayshi, Minimal submanifolds of sphere with second fundamental form of constant length, Springer-Verlag, 1970, 59–75. doi: 10.1007/978-3-642-25588-5_5. |
[13] | U. H. Ki, Y. H. Kim, Totally real submanifolds of a complex space form, Int. J. Math. Math. Sci., 19 (1996), 39–44. doi: 10.1155/S0161171296000075. doi: 10.1155/S0161171296000075 |
[14] | A. M. Li, J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math., 58 (1992), 582–594. doi: 10.1007/BF01193528. doi: 10.1007/BF01193528 |
[15] | H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann., 305 (1996), 665–672. doi: 10.1007/BF01444243. doi: 10.1007/BF01444243 |
[16] | H. Li, Willmore submanifolds in a sphere, Math. Res. Lett., 9 (2002), 771–790. doi: 10.4310/MRL.2002.v9.n6.a6. doi: 10.4310/MRL.2002.v9.n6.a6 |
[17] | X. Guo, H. Li, Submanifolds with constant scalar curvature in a unit sphere, Tohoku Math. J., 65 (2013), 331–339. doi: 10.2748/tmj/1378991019. doi: 10.2748/tmj/1378991019 |
[18] | G. D. Ludden, M. Okumura, K. Yano, A totally real surface in $CP^{2}$ that is not totally geodesic, P. Am. Math. Soc., 53 (1975), 186–190. doi: 10.1090/S0002-9939-1975-0380683-0. doi: 10.1090/S0002-9939-1975-0380683-0 |
[19] | M. Okumura, Hypersurface and a pinching problem on the second fundamental tensor, Am. J. Math., 96 (1974), 207–213. doi: 10.2307/2373587. doi: 10.2307/2373587 |
[20] | B. Sahin, S. Keles, Slant submanifolds of Kaehler product manifolds, Turk. J. Math., 31 (2007), 65–77. |
[21] | W. Santos, Submanifolds with parallel mean curvature vector in spheres, Tohoku Math. J., 46 (1994), 403–415. doi: 10.2748/tmj/1178225720. doi: 10.2748/tmj/1178225720 |
[22] | G. E. Vilcu, An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati curvature, J. Math. Anal. Appl., 465 (2018), 1209–1222. doi: 10.1016/j.jmaa.2018.05.060. doi: 10.1016/j.jmaa.2018.05.060 |
[23] | K. Yano, M. Kon, Submanifolds of Kaehlerian product manifolds, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), 15 (1979), 265–292. |
[24] | K. Yano, M. Kon, Structures on Manifolds: Series in Pure Mathematics, World Scientific, 1984. |