Research article

A characterization for totally real submanifolds using self-adjoint differential operator

  • Received: 29 August 2021 Accepted: 26 September 2021 Published: 30 September 2021
  • MSC : 53C05, 53C20, 53C40

  • In this article, we study totally real submanifolds in Kaehler product manifold with constant scalar curvature using self-adjoint differential operator $ \Box $. Under this setup, we obtain a characterization result. Moreover, we discuss $ \delta- $invariant properties of such submanifolds and get an obstruction result as an application of the inequality derived. The results in the article are supported by non-trivial examples.

    Citation: Mohd. Aquib, Amira A. Ishan, Meraj Ali Khan, Mohammad Hasan Shahid. A characterization for totally real submanifolds using self-adjoint differential operator[J]. AIMS Mathematics, 2022, 7(1): 104-120. doi: 10.3934/math.2022006

    Related Papers:

  • In this article, we study totally real submanifolds in Kaehler product manifold with constant scalar curvature using self-adjoint differential operator $ \Box $. Under this setup, we obtain a characterization result. Moreover, we discuss $ \delta- $invariant properties of such submanifolds and get an obstruction result as an application of the inequality derived. The results in the article are supported by non-trivial examples.



    加载中


    [1] A. H. Alkhaldi, A. Ali, Geometry of bi-warped product submanifolds of nearly trans-Sasakian manifolds, Mathematics, 9 (2021), 847. doi: 10.3390/math9080847. doi: 10.3390/math9080847
    [2] N. Alluhaibi, A. Ali, I. Ahmad, On differential equations characterizing Legendrian submanifolds of Sasakian space forms, Mathematics, 8 (2020), 150. doi: 10.3390/math8020150. doi: 10.3390/math8020150
    [3] M. Aquib, J. W. Lee, G. E. Vilcu, D. W. Yoon, Classification of Casorati ideal Lagrangian submanifolds in complex space forms, Differ. Geom. Appl., 63 (2019), 30–49. doi: 10.1016/j.difgeo.2018.12.006. doi: 10.1016/j.difgeo.2018.12.006
    [4] M. Atceken, CR-submanifolds of Kaehlerian product manifolds, Balk. J. Geom. Appl., 12 (2007), 8–20. doi: 10.1142/9789812708908_0018. doi: 10.1142/9789812708908_0018
    [5] M. Atceken, S. Keles, On the CR-submanifolds of Kaehler product manifolds, Differ. Geom. Dyn. Sys., 10 (2008), 21–31.
    [6] D. Blair, On the geometric meaning of the Bochner tensor, Geometriae Dedicata, 4 (1975), 33–38. doi: 10.1007/BF00147399. doi: 10.1007/BF00147399
    [7] B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math., 60 (1993), 568–578. doi: 10.1007/BF01236084. doi: 10.1007/BF01236084
    [8] B. Y. Chen, Some new obstruction to minimal and Lagrangian isometric immersions, Jpn. J. Math., 26 (1993), 105–127. doi: 10.4099/math1924.26.105. doi: 10.4099/math1924.26.105
    [9] B. Y. Chen, Riemannian geometry of Lagrangian submanifolds, Taiwan. J. Math., 5 (2001), 681–723. doi: 10.11650/twjm/1500574989. doi: 10.11650/twjm/1500574989
    [10] B. Y. Chen, K. Ogiue, On totally real submanifolds, T. Am. Math. Soc., 193 (1974), 257–266. doi: 10.2307/1996914. doi: 10.2307/1996914
    [11] S. Y. Cheng, S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195–204. doi: 10.1007/BF01425237. doi: 10.1007/BF01425237
    [12] S. S. Chern, M. P. do Carmo, S. Kobayshi, Minimal submanifolds of sphere with second fundamental form of constant length, Springer-Verlag, 1970, 59–75. doi: 10.1007/978-3-642-25588-5_5.
    [13] U. H. Ki, Y. H. Kim, Totally real submanifolds of a complex space form, Int. J. Math. Math. Sci., 19 (1996), 39–44. doi: 10.1155/S0161171296000075. doi: 10.1155/S0161171296000075
    [14] A. M. Li, J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math., 58 (1992), 582–594. doi: 10.1007/BF01193528. doi: 10.1007/BF01193528
    [15] H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann., 305 (1996), 665–672. doi: 10.1007/BF01444243. doi: 10.1007/BF01444243
    [16] H. Li, Willmore submanifolds in a sphere, Math. Res. Lett., 9 (2002), 771–790. doi: 10.4310/MRL.2002.v9.n6.a6. doi: 10.4310/MRL.2002.v9.n6.a6
    [17] X. Guo, H. Li, Submanifolds with constant scalar curvature in a unit sphere, Tohoku Math. J., 65 (2013), 331–339. doi: 10.2748/tmj/1378991019. doi: 10.2748/tmj/1378991019
    [18] G. D. Ludden, M. Okumura, K. Yano, A totally real surface in $CP^{2}$ that is not totally geodesic, P. Am. Math. Soc., 53 (1975), 186–190. doi: 10.1090/S0002-9939-1975-0380683-0. doi: 10.1090/S0002-9939-1975-0380683-0
    [19] M. Okumura, Hypersurface and a pinching problem on the second fundamental tensor, Am. J. Math., 96 (1974), 207–213. doi: 10.2307/2373587. doi: 10.2307/2373587
    [20] B. Sahin, S. Keles, Slant submanifolds of Kaehler product manifolds, Turk. J. Math., 31 (2007), 65–77.
    [21] W. Santos, Submanifolds with parallel mean curvature vector in spheres, Tohoku Math. J., 46 (1994), 403–415. doi: 10.2748/tmj/1178225720. doi: 10.2748/tmj/1178225720
    [22] G. E. Vilcu, An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati curvature, J. Math. Anal. Appl., 465 (2018), 1209–1222. doi: 10.1016/j.jmaa.2018.05.060. doi: 10.1016/j.jmaa.2018.05.060
    [23] K. Yano, M. Kon, Submanifolds of Kaehlerian product manifolds, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), 15 (1979), 265–292.
    [24] K. Yano, M. Kon, Structures on Manifolds: Series in Pure Mathematics, World Scientific, 1984.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2454) PDF downloads(137) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog