Due to its unique performance of high efficiency, fast heating speed and low power consumption, induction heating is widely and commonly used in many applications. In this paper, we study an optimal control problem arising from a metal melting process by using a induction heating method. Metal melting phenomena can be modeled by phase field equations. The aim of optimization is to approximate a desired temperature evolution and melting process. The controlled system is obtained by coupling Maxwell's equations, heat equation and phase field equation. The control variable of the system is the external electric field on the local boundary. The existence and uniqueness of the solution of the controlled system are showed by using Galerkin's method and Leray-Schauder's fixed point theorem. By proving that the control-to-state operator $ P $ is weakly sequentially continuous and Fréchet differentiable, we establish an existence result of optimal control and derive the first-order necessary optimality conditions. This work improves the limitation of the previous control system which only contains heat equation and phase field equation.
Citation: Zonghong Xiong, Wei Wei, Ying Zhou, Yue Wang, Yumei Liao. Optimal control for a phase field model of melting arising from inductive heating[J]. AIMS Mathematics, 2022, 7(1): 121-142. doi: 10.3934/math.2022007
Due to its unique performance of high efficiency, fast heating speed and low power consumption, induction heating is widely and commonly used in many applications. In this paper, we study an optimal control problem arising from a metal melting process by using a induction heating method. Metal melting phenomena can be modeled by phase field equations. The aim of optimization is to approximate a desired temperature evolution and melting process. The controlled system is obtained by coupling Maxwell's equations, heat equation and phase field equation. The control variable of the system is the external electric field on the local boundary. The existence and uniqueness of the solution of the controlled system are showed by using Galerkin's method and Leray-Schauder's fixed point theorem. By proving that the control-to-state operator $ P $ is weakly sequentially continuous and Fréchet differentiable, we establish an existence result of optimal control and derive the first-order necessary optimality conditions. This work improves the limitation of the previous control system which only contains heat equation and phase field equation.
[1] | Y. H. Li, Induction heating in forging industry-Lecture 1: basis of induction heating, (Chinese), Mechanic (hot working), 1 (2007), 80–82. |
[2] | G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational. Mech. Anal., 92 (1986), 205–245. doi: 10.1007/BF00254827. doi: 10.1007/BF00254827 |
[3] | R. V. Manoranjan, H. M. Yin, R. Showalter, On two-phase Stefan problem arising from a microwave heating process, DCDS, 15 (2006), 1155–1168. doi: 10.3934/dcds.2006.15.1155. doi: 10.3934/dcds.2006.15.1155 |
[4] | L. D. Landau, E. M. Lifshitz, Electrodynamics of continuous media, New York: Pergamon Press, 1960. |
[5] | A. C. Metaxas, R. J. Meredith, Industrial microwave heating, London: Perter Peregrimus Ltd., 1983. |
[6] | A. C. Metaxas, Foundations of electroheat, a unified approach, New York: Wiley, 1996. |
[7] | W. Wei, H. M. Yin, J. Tang, An optimal control problem for microwave heating, Nonlinear Anal. Theor., 75 (2012), 2024–2036. doi: 10.1016/j.na.2011.10.003. doi: 10.1016/j.na.2011.10.003 |
[8] | H. M. Yin, W. Wei, Regularity of weak solution for a coupled system arising from a microwave heating model, Eur. J. Appl. Math., 25 (2014), 117–131. doi: 10.1017/S0956792513000326. doi: 10.1017/S0956792513000326 |
[9] | H. M. Yin, W. Wei, A nonlinear optimal control problem arising from a sterilization process for packaged Foods, Appl. Math. Opt., 77 (2018), 499–513. doi: 10.1007/s00245-016-9382-0. doi: 10.1007/s00245-016-9382-0 |
[10] | Y. M. Liao, W. Wei, X. B. Luo, Existence of solution of a microwave heating model and associated optimal frequency control problems, J. Ind. Manag. Opt., 16 (2020), 2103–2116. doi: 10.3934/jimo.2019045. doi: 10.3934/jimo.2019045 |
[11] | D. S. Luo, W. Wei, Y. M. Liao, H. Y. Deng, Bang-Bang property of time optimal control for a kind of microwave heating problem, J. Optim. Theory. Appl., 183 (2019), 317–331. doi: 10.1007/s10957-019-01559-y. doi: 10.1007/s10957-019-01559-y |
[12] | R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, New York: Springer, 1997. doi: 10.1007/978-1-4612-0645-3. |
[13] | G. Caginalp, E. A. Socolovsky, Phase field computations of single-needle crystals, crystal growth and motion by mean curvature, SIAM J. Sci. Comput., 15 (1994), 106–126. doi: 10.1137/0915007. doi: 10.1137/0915007 |
[14] | G. Caginalp, J. Jones, A derivation and analysis of phase field models of thermal alloys, Ann. Phys., 237 (1995), 66–107. doi: 10.1006/aphy.1995.1004. doi: 10.1006/aphy.1995.1004 |
[15] | K. H. Hoffman, L. S. Jiang, Optimal control of a phase field model for solidification, Numer. Func. Anal. Opt., 13 (1992), 11–27. doi: 10.1080/01630569208816458. doi: 10.1080/01630569208816458 |
[16] | J. L. Boldrini, B. M. C. Caretta, E. Fernández-Cara, Analysis of a two-phase field model for the solidification of an alloy, J. Math. Anal. Appl., 357 (2009), 25–44. doi: 10.1016/j.jmaa.2009.03.063. doi: 10.1016/j.jmaa.2009.03.063 |
[17] | J. L. Boldrini, B. M. C. Caretta, E. Fernández-Cara, Some optimal control problems for a two-phase field model of solidification, Rev. Mat. Complut., 23 (2010), 49. doi: 10.1007/s13163-009-0012-0. doi: 10.1007/s13163-009-0012-0 |
[18] | B. M. C. Caretta, J. L. Boldrini, Local existence of solutions of a three phase field model for solidification, Math. Method. Appl. Sci., 32 (2009), 1496–1518. doi: 10.1002/mma.1094. doi: 10.1002/mma.1094 |
[19] | P. Colli, G. Gilardi, J. Sprekels, Optimal control of a phase field system of Caginalp type with fractional operators, WIAS, 2020. doi: 10.20347/WIAS.PREPRINT.2725. |
[20] | A. Nourian-Avval, E. Asadi, On the quantification of phase-field crystals model for computational simulations of solidification in metals, Comp. Mater. Sci., 128 (2017), 294–301. doi: 10.1016/j.commatsci.2016.11.042. doi: 10.1016/j.commatsci.2016.11.042 |
[21] | S. Sakane, T. Takaki, M. Ohno, Y. Shibuta, T. Aoki, Two-dimensional large-scale phase-field lattice Boltzmann simulation of polycrystalline equiaxed solidification with motion of a massive number of dendrites, Comp. Mater. Sci., 178 (2020), 109639. doi: 10.1016/j.commatsci.2020.109639. doi: 10.1016/j.commatsci.2020.109639 |
[22] | A. Zhang, J. L. Du, X. P. Zhang, Z. P. Guo, Q. G. Wang, S. M. Xiong, Phase-field modeling of microstructure evolution in the presence of bubble during solidification, Metall. Mater. Trans., 51 (2020), 1023–1037. doi: 10.1007/s11661-019-05593-3. doi: 10.1007/s11661-019-05593-3 |
[23] | J. H. Song, Y. Fu, T. Y. Kim, Y. C. Yoon, J. G. Michopoulos, T. Rabczuk, Phase field simulations of coupled microstructure solidification problems via the strong form particle difference method, Int. J. Mech. Mater. Des., 14 (2018), 491–509. doi: 10.1007/s10999-017-9386-1. doi: 10.1007/s10999-017-9386-1 |
[24] | N. T. Nhon, W. D. Li, J. Z. Huang, K. Zhou, Adaptive higher-order phase-field modeling of anisotropic brittle fracture in 3 D polycrystalline materials, Comput. Method. Appl. M., 372 (2020), 113434. doi: 10.1016/j.cma.2020.113434. doi: 10.1016/j.cma.2020.113434 |
[25] | W. D. Li, N. T. Nhon, K. Zhou, Phase-field modeling of brittle fracture in a 3D polycrystalline material via an adaptive isogeometric-meshfree approach, Int. J. Numer. Meth. Eng., 121 (2020), 5042–5065. doi: 10.1002/nme.6509. doi: 10.1002/nme.6509 |
[26] | P. Monk, Finite element methods for Maxwell equations, New York: Oxford Univisity Press, 2003. |
[27] | Y. Z. Chen, Second order parabolic partial differential equation, (Chinese), Beijing: Peking University Press, 2003. |
[28] | J. L. Lions, Control of distributed singular systems, Gauthier-Villars, 1985. |
[29] | A. Friedman, Partial differential equations of parabolic type, Prentice Hall, 1964. |
[30] | F. Troltzsch, Optimal control of partial differential equations, theory, methods and applications, Providence, Rhode Island: AMS, 2010. |