Research article

Dynamic analysis of a stochastic vector-borne model with direct transmission and media coverage

  • Received: 05 December 2023 Revised: 04 February 2024 Accepted: 07 February 2024 Published: 06 March 2024
  • MSC : 60G51, 60G57, 92B05

  • This paper presents a stochastic vector-borne epidemic model with direct transmission and media coverage. It proves the existence and uniqueness of positive solutions through the construction of a suitable Lyapunov function. Immediately after that, we study the transmission mechanism of vector-borne diseases and give threshold conditions for disease extinction and persistence; in addition we show that the model has a stationary distribution that is determined by a threshold value, i.e., the existence of a stationary distribution is unique under specific conditions. Finally, a stochastic model that describes the dynamics of vector-borne diseases has been numerically simulated to illustrate our mathematical findings.

    Citation: Yue Wu, Shenglong Chen, Ge Zhang, Zhiming Li. Dynamic analysis of a stochastic vector-borne model with direct transmission and media coverage[J]. AIMS Mathematics, 2024, 9(4): 9128-9151. doi: 10.3934/math.2024444

    Related Papers:

  • This paper presents a stochastic vector-borne epidemic model with direct transmission and media coverage. It proves the existence and uniqueness of positive solutions through the construction of a suitable Lyapunov function. Immediately after that, we study the transmission mechanism of vector-borne diseases and give threshold conditions for disease extinction and persistence; in addition we show that the model has a stationary distribution that is determined by a threshold value, i.e., the existence of a stationary distribution is unique under specific conditions. Finally, a stochastic model that describes the dynamics of vector-borne diseases has been numerically simulated to illustrate our mathematical findings.



    加载中


    [1] World Health Organization, Vector-borne diseases, 2017. Available from: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.html
    [2] R. Ross, The prevention of malaria, John Murray, 1911.
    [3] G. MacDonald, The analysis of equilibrium in malaria, Trop. Dis. Bull., 49 (1952), 813–829.
    [4] J. Tumwiine, J. Y. T. Mugisha, L. S. Luboobi, A host-vector model for malaria with infective immigrants, J. Math. Anal. Appl., 361 (2010), 139–149. https://doi.org/10.1016/j.jmaa.2009.09.005 doi: 10.1016/j.jmaa.2009.09.005
    [5] S. H. Saker, Stability and Hopf Bifurcations of nonlinear delay malaria epidemic model, Nonlinear Anal. Real, 11 (2010), 784–799. https://doi.org/10.1016/j.nonrwa.2009.01.024 doi: 10.1016/j.nonrwa.2009.01.024
    [6] N. Chitnis, J. M. Cushing, J. M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67 (2006), 24–45. https://doi.org/10.1137/050638941 doi: 10.1137/050638941
    [7] S. Ruan, D. Xiao, J. Beier, On the delayed Ross-Macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008), 1098–1114. https://doi.org/10.1007/s11538-007-9292-z doi: 10.1007/s11538-007-9292-z
    [8] X. Wang, Y. Chen, S. Liu, Global dynamics of a vector-borne disease model with infection ages and general incidence rates, Comp. Appl. Math., 37 (2018), 4055–4080. https://doi.org/10.1007/s40314-017-0560-8 doi: 10.1007/s40314-017-0560-8
    [9] Y. Dang, Z. Qiu, X. Li, Competitive exclusion in an infection-age structured vector-host epidemic model, Math. Biosci. Eng., 14 (2017), 901–931. https://doi.org/10.3934/mbe.2017048 doi: 10.3934/mbe.2017048
    [10] M. De la Sen, S. Alonso-Quesada, A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, J. Appl. Math. Comput., 270 (2015), 953–976. https://doi.org/10.1016/j.amc.2015.08.099 doi: 10.1016/j.amc.2015.08.099
    [11] Y. Sabbar, A. Khan, A. Din, M. Tilioua, New method to investigate the impact of independent quadratic $\alpha$-stable Poisson jumps on the dynamics of a disease under vaccination strategy, Fractal Fract., 7 (2023), 226. https://doi.org/10.3390/fractalfract7030226 doi: 10.3390/fractalfract7030226
    [12] B. D. Foy, K. C. Kobylinski, J. L. C. Foy, B. J. Blitvich, A. T. da Rosa, A. D. Haddow, et al., Probable non-vector-borne transmission of Zika virus, Colorado, USA, Emerg. Infect. Dis., 17 (2011), 880-882. http://10.3201/eid1705.101939 doi: 10.3201/eid1705.101939
    [13] A. Din, Y. Li, T. Khan, H. Tahir, A. Khan, W. A. Khan, Mathematical analysis of dengue stochastic epidemic model, Results Phys., 20 (2021), 103719. https://doi.org/10.1016/j.rinp.2020.103719 doi: 10.1016/j.rinp.2020.103719
    [14] X. Wang, Y. Chen, M. Martcheva, L. Rong, Asymptotic analysis of a vector-borne disease model with the age of infection, J. Biol. Dyn., 14 (2020), 332–367. https://doi.org/10.1080/17513758.2020.1745912 doi: 10.1080/17513758.2020.1745912
    [15] N. Tuncer, S. Giri, Dynamics of a vector-borne model with direct transmission and age of infection, Math. Model. Nat. Phenom., 16 (2021), 28. https://doi.org/10.1051/mmnp/2021019 doi: 10.1051/mmnp/2021019
    [16] H. Wei, X. Li, M. Martcheva, An epidemic model of a vector-borne disease with direct transmission and time delay, J. Math. Anal. Appl., 342 (2008), 895–908. https://doi.org/10.1016/j.jmaa.2007.12.058 doi: 10.1016/j.jmaa.2007.12.058
    [17] Y. Xiao, T. Zhao, S. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 10 (2012), 445–461. https://doi.org/10.3934/mbe.2013.10.445 doi: 10.3934/mbe.2013.10.445
    [18] Y. Zhang, K. Fan, S. Gao, Y. Liu, S. Che, Ergodic stationary distribution of a stochastic SIRS epidemic model incorporating media coverage and saturated incidence rate, Physica A, 514 (2018), 671–685. https://doi.org/10.1016/j.physa.2018.09.124 doi: 10.1016/j.physa.2018.09.124
    [19] Y. Liu, J. A. Cui, The impact of media coverage on the dynamics of infectious disease, Int. J. Biomath., 1 (2008), 65–74. https://doi.org/10.1142/S1793524508000023 doi: 10.1142/S1793524508000023
    [20] Y. Cai, Y. Kang, M. Banerjee, W. Wang, A stochastic epidemic model incorporating media coverage, Commun. Math. Sci., 14 (2016), 839-910. https://doi.org/10.4310/CMS.2016.v14.n4.a1 doi: 10.4310/CMS.2016.v14.n4.a1
    [21] Y. Ding, Y. Fu, Y. Kan, Stochastic analysis of COVID-19 by a SEIR model with L$\acute{e}$vy noise, Chaos, 31 (2021), 043132. https://doi.org/10.1063/5.0021108
    [22] T. C. Gard, Persistence in stochastic food web models, Bull. Math. Biol., 46 (1984), 357–370. https://doi.org/10.1007/BF02462011 doi: 10.1007/BF02462011
    [23] Y. Zhao, S. Yuan, T. Zhang, The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching, Commun. Nonlinear Sci. Numer. Simul., 37 (2016), 131–142. https://doi.org/10.1016/j.cnsns.2016.01.013 doi: 10.1016/j.cnsns.2016.01.013
    [24] W. Zhao, J. Li, T. Zhang, X. Meng, T. Zhang, Persistence and ergodicity of plant disease model with Markov conversion and impulsive toxicant input, Commun. Nonlinear Sci. Numer. Simul., 48 (2017), 70–84. https://doi.org/10.1016/j.cnsns.2016.12.020 doi: 10.1016/j.cnsns.2016.12.020
    [25] O. A. van Herwaarden, J. Grasman, Stochastic epidemics: major outbreaks and the duration of the endemic period, J. Math. Biol., 33 (1995), 581–601. https://doi.org/ 10.1007/BF00298644 doi: 10.1007/BF00298644
    [26] I. N$\ddot{a}$sell, Stochastic models of some endemic infections, Math. Biosci., 179 (2002), 1–19. https://doi.org/10.1016/s0025-5564(02)00098-6 doi: 10.1016/s0025-5564(02)00098-6
    [27] A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902. https://doi.org/10.1137/10081856X doi: 10.1137/10081856X
    [28] Q. Liu, D. Jiang, Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation, Appl. Math. Lett., 73 (2017), 8–15. https://doi.org/10.1016/j.aml.2017.04.021 doi: 10.1016/j.aml.2017.04.021
    [29] Y. Sabbar, A. Khan, A. Din, D. Kiouach, S. P. Rajasekar, Determining the global threshold of an epidemic model with general interference function and high-order perturbation, AIMS Math., 11 (2022), 19865–19890. https://doi.org/10.3934/math.20221088 doi: 10.3934/math.20221088
    [30] Y. Sabbar, D. Kiouach, New method to obtain the acute sill of an ecological model with complex polynomial perturbation, Math. Method. Appl. Sci., 46 (2023), 2455–2474. https://doi.org/10.1002/mma.8654 doi: 10.1002/mma.8654
    [31] Y. Sabbar, M. Yavuz, F. $\ddot{O}$zk$\ddot{o}$se, Infection eradication criterion in a general epidemic model with logistic growth, quarantine strategy, media intrusion, and quadratic perturbation, Mathematics, 10 (2022), 4213. https://doi.org/10.3390/math10224213 doi: 10.3390/math10224213
    [32] D. Kiouach, S. E. A. El-idrissi, Y. Sabbar, An improvement of the extinction sufficient conditions for a higher-order stochastically disturbed AIDS/HIV model, Appl. Math. Comput., 447 (2023), 127877. https://doi.org/10.1016/j.amc.2023.127877 doi: 10.1016/j.amc.2023.127877
    [33] K. S. Nisar, Y. Sabbar, Long-run analysis of a perturbed HIV/AIDS model with antiretroviral therapy and heavy-tailed increments performed by tempered stable L$\acute{e}$vy jumps, Alex. Eng. J., 78 (2023), 498–516. https://doi.org/10.1016/j.aej.2023.07.053 doi: 10.1016/j.aej.2023.07.053
    [34] S. El Attouga, D. Bouggar, M. El Fatini, A. Hilbert, R. Pettersson, L$\acute{e}$vy noise with infinite activity and the impact on the dynamic of an SIRS epidemic model, Physica A, 618 (2023), 128701. 10.1016/j.physa.2023.128701 doi: 10.1016/j.physa.2023.128701
    [35] M. Jovanovi$\acute{c}$, M. Krsti$\acute{c}$, Stochastically perturbed vector-borne disease models with direct transmissiona, Appl. Math. Modell., 36 (2012), 5214–5228. https://doi.org10.1016/j.apm.2011.11.087 doi: 10.1016/j.apm.2011.11.087
    [36] X. Ran, L. Nie, L. Hu, Z. Teng, Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate, Appl. Math. Comput., 394 (2021), 125798. https://doi.org/10.1016/j.amc.2020.125798 doi: 10.1016/j.amc.2020.125798
    [37] H. Son, D. Denu, Vector-host epidemic model with direct transmission in random environment, Chaos, 31 (2021), 113117. https://doi.org/10.1063/5.0059031 doi: 10.1063/5.0059031
    [38] D. Jiang, J. Yu, C. Ji, N. Shi, Asymptotic behavior of global positive solution to a stochastic SIR model, Math. Comput. Model., 54 (2011), 221–232. https://doi.org/10.1016/j.mcm.2011.02.004 doi: 10.1016/j.mcm.2011.02.004
    [39] C. Ji, D. Jiang, Q. Yang, N. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica, 48 (2012), 121–131. https://doi.org/10.1016/j.automatica.2011.09.044 doi: 10.1016/j.automatica.2011.09.044
    [40] X. Mao, Stochastic differential equations and applications, Elsevier, 2007.
    [41] A. Lahrouz, L. Omari, Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence, Stat. Probabil. Lett., 83 (2013), 960–968. https://doi.org/10.1016/j.spl.2012.12.021 doi: 10.1016/j.spl.2012.12.021
    [42] Y. Zhao, D. Jiang, D. O'Regan, The extinction and persistence of the stochastic SIS epidemic model with vaccination, Physica A, 392 (2013), 4916–4927. https://doi.org/10.1016/j.physa.2013.06.009
    [43] R. Khasminskii, Stochastic stability of differential equations, Berlin: Springer, 2011. https://doi.org/10.1007/978-3-642-23280-0
    [44] Y. Zhou, W. Zhang, S. Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 244 (2014), 118–131. https://doi.org/10.1016/j.amc.2014.06.100 doi: 10.1016/j.amc.2014.06.100
    [45] C. Ji, D. Jiang, Threshold behaviour of a stochastic SIR model, Appl Math Model., 38 (2014), 5067–5079. https://doi.org/10.1016/j.apm.2014.03.037 doi: 10.1016/j.apm.2014.03.037
    [46] D. Kiouach, Y. Sabbar, Nonlinear dynamical analysis of a stochastic SIRS epidemic system with vertical dissemination and switch from infectious to susceptible individuals, J. Appl. Nonlinear Dyn., 11 (2022), 605–633. https://doi.org/10.5890/JAND.2022.09.007 doi: 10.5890/JAND.2022.09.007
    [47] D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S003614450037830 doi: 10.1137/S003614450037830
    [48] X. Zhai, W. Li, F. Wei, X. Mao, Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations, Chaos Soliton. Fract., 169 (2023), 113224. https://doi.org/10.1016/j.chaos.2023.113224 doi: 10.1016/j.chaos.2023.113224
    [49] Y. Cai, X. Mao, F. Wei, An advanced numerical scheme for multi-dimensional stochastic Kolmogorov equations with superlinear coefficients, J. Comput. Appl. Math., 437 (2024), 115472. https://doi.org/10.1016/j.cam.2023.115472 doi: 10.1016/j.cam.2023.115472
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(516) PDF downloads(40) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog