Research article

Stochastic epidemic model for the dynamics of novel coronavirus transmission

  • Received: 22 February 2024 Accepted: 21 March 2024 Published: 29 March 2024
  • MSC : 26A33, 34A08, 34A12

  • Stochastic differential equation models are important and provide more valuable outputs to examine the dynamics of SARS-CoV-2 virus transmission than traditional models. SARS-CoV-2 virus transmission is a contagious respiratory disease that produces asymptomatically and symptomatically infected individuals who are susceptible to multiple infections. This work was purposed to introduce an epidemiological model to represent the temporal dynamics of SARS-CoV-2 virus transmission through the use of stochastic differential equations. First, we formulated the model and derived the well-posedness to show that the proposed epidemiological problem is biologically and mathematically feasible. We then calculated the stochastic reproductive parameters for the proposed stochastic epidemiological model and analyzed the model extinction and persistence. Using the stochastic reproductive parameters, we derived the condition for disease extinction and persistence. Applying these conditions, we have performed large-scale numerical simulations to visualize the asymptotic analysis of the model and show the effectiveness of the results derived.

    Citation: Tahir Khan, Fathalla A. Rihan, Muhammad Bilal Riaz, Mohamed Altanji, Abdullah A. Zaagan, Hijaz Ahmad. Stochastic epidemic model for the dynamics of novel coronavirus transmission[J]. AIMS Mathematics, 2024, 9(5): 12433-12457. doi: 10.3934/math.2024608

    Related Papers:

  • Stochastic differential equation models are important and provide more valuable outputs to examine the dynamics of SARS-CoV-2 virus transmission than traditional models. SARS-CoV-2 virus transmission is a contagious respiratory disease that produces asymptomatically and symptomatically infected individuals who are susceptible to multiple infections. This work was purposed to introduce an epidemiological model to represent the temporal dynamics of SARS-CoV-2 virus transmission through the use of stochastic differential equations. First, we formulated the model and derived the well-posedness to show that the proposed epidemiological problem is biologically and mathematically feasible. We then calculated the stochastic reproductive parameters for the proposed stochastic epidemiological model and analyzed the model extinction and persistence. Using the stochastic reproductive parameters, we derived the condition for disease extinction and persistence. Applying these conditions, we have performed large-scale numerical simulations to visualize the asymptotic analysis of the model and show the effectiveness of the results derived.



    加载中


    [1] Z. Wu, J. M. McGoogan, Characteristics of and important lessons from the coronavirus disease 2019 (Covid-19) outbreak in China: Summary of a report of 72 314 cases from the chinese center for disease control and prevention, JAMA, 323 (2020), 1239–1242. https://doi.org/10.1001/jama.2020.2648 doi: 10.1001/jama.2020.2648
    [2] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner, et al., Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing, Science, 368 (2020), eabb6936. https://doi.org/10.1126/science.abb6936 doi: 10.1126/science.abb6936
    [3] A. V. Kamyad, R. Akbari, A. A. Heydari, A. Heydari, Mathematical modeling of transmission dynamics and optimal control of vaccination and treatment for hepatitis B virus, Comput. Math. Method. M., 2014 (2014), 475451. https://doi.org/10.1155/2014/475451 doi: 10.1155/2014/475451
    [4] S. Cai, Y. Cai, X. Mao, A stochastic differential equation sis epidemic model with two correlated brownian motions, Nonlinear Dynam., 97 (2019), 2175–2187. https://doi.org/10.1007/s11071-019-05114-2 doi: 10.1007/s11071-019-05114-2
    [5] A. Nwankwo, D. Okuonghae, A mathematical model for the population dynamics of malaria with a temperature dependent control, Differ. Equat. Dyn. Sys., 30 (2022), 719–748. https://doi.org/10.1007/s12591-019-00466-y doi: 10.1007/s12591-019-00466-y
    [6] A. Din, A. Khan, Y. Sabbar, Long-term bifurcation and stochastic optimal control of a triple-delayed Ebola virus model with vaccination and quarantine strategies, Fractal Fract., 6 (2022), 578. https://doi.org/10.3390/fractalfract6100578 doi: 10.3390/fractalfract6100578
    [7] P. R. S. Rao, M. N. Kumar, A dynamic model for infectious diseases: the role of vaccination and treatment, Chaos Soliton. Fract., 75 (2015), 34–49. https://doi.org/10.1016/j.chaos.2015.02.004 doi: 10.1016/j.chaos.2015.02.004
    [8] A. Akgül, S. H. Khoshnaw, A. S. Abdalrahman, Mathematical modeling for enzyme inhibitors with slow and fast subsystems, Arab J. Basic Appl. Sci., 27 (2020), 442–449. https://doi.org/10.1080/25765299.2020.1844369 doi: 10.1080/25765299.2020.1844369
    [9] A. Omame, D. Okuonghae, R. Umana, S. Inyama, Analysis of a co-infection model for HPV-TB, Appl. Math. Model., 77 (2020), 881–901. https://doi.org/10.1016/j.apm.2019.08.012 doi: 10.1016/j.apm.2019.08.012
    [10] D. Li, F. Wei, X. Mao, Stationary distribution and density function of a stochastic SVIR epidemic model, J. Franklin I., 359 (2022), 9422–9449. https://doi.org/10.1016/j.jfranklin.2022.09.026 doi: 10.1016/j.jfranklin.2022.09.026
    [11] S. Majee, S. Jana, S. Barman, T. K. Kar, Transmission dynamics of monkeypox virus with treatment and vaccination controls: A fractional order mathematical approach, Phys. Scripta, 98 (2023), 024002. https://doi.org/10.1088/1402-4896/acae64 doi: 10.1088/1402-4896/acae64
    [12] Y. Sabbar, A. Din, D. Kiouach, Influence of fractal-fractional differentiation and independent quadratic lévy jumps on the dynamics of a general epidemic model with vaccination strategy, Chaos Soliton. Fract., 171 (2023), 113434. https://doi.org/10.1016/j.chaos.2023.113434 doi: 10.1016/j.chaos.2023.113434
    [13] X. Zhai, W. Li, F. Wei, X. Mao, Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations, Chaos Soliton. Fract., 169 (2023), 113224. https://doi.org/10.1016/j.chaos.2023.113224 doi: 10.1016/j.chaos.2023.113224
    [14] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: A mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553–558. https://doi.org/10.1016/S1473-3099(20)30144-4 doi: 10.1016/S1473-3099(20)30144-4
    [15] P. Samui, J. Mondal, S. Khajanchi, A mathematical model for COVID-19 transmission dynamics with a case study of india, Chaos Soliton. Fract., 140 (2020), 110173. https://doi.org/10.1016/j.chaos.2020.110173 doi: 10.1016/j.chaos.2020.110173
    [16] F. Bozkurt, A. Yousef, D. Baleanu, J. Alzabut, A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host, Chaos Soliton. Fract., 138 (2020), 109931. https://doi.org/10.1016/j.chaos.2020.109931 doi: 10.1016/j.chaos.2020.109931
    [17] A. G. M. Selvam, J. Alzabut, D. A. Vianny, M. Jacintha, F. B. Yousef, Modeling and stability analysis of the spread of novel coronavirus disease COVID-19, Int. J. Biomath., 14 (2021), 2150035. https://doi.org/10.1142/S1793524521500352 doi: 10.1142/S1793524521500352
    [18] T. Khan, G. Zaman, Y. El Khatib, Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model, Results Phys., 24 (2021), 104004. https://doi.org/10.1016/j.rinp.2021.104004 doi: 10.1016/j.rinp.2021.104004
    [19] C. Bender, An Itô formula for generalized functionals of a fractional brownian motion with arbitrary hurst parameter, Stoch. Proc. Appl., 104 (2003), 81–106. https://doi.org/10.1016/S0304-4149(02)00212-0 doi: 10.1016/S0304-4149(02)00212-0
    [20] Q. Lei, Z. Yang, Dynamical behaviors of a stochastic SIRI epidemic model, Appl. Anal., 96 (2017), 2758–2770. https://doi.org/10.1080/00036811.2016.1240365 doi: 10.1080/00036811.2016.1240365
    [21] Y. El-Khatib, A. Hatemi-J, Option valuation and hedging in markets with a crunch, J. Econ. Stud., 44 (2017). https://doi.org/10.1108/JES-04-2016-0083
    [22] K. Chung, The strong law of large numbers, The Regents of the University of California, 2008,145–156.
    [23] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(455) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog