In the present study, we provide a new approximation scheme for solving stochastic differential equations based on the explicit Milstein scheme. Under sufficient conditions, we prove that the split-step $ (\alpha, \beta) $-Milstein scheme strongly convergence to the exact solution with order $ 1.0 $ in mean-square sense. The mean-square stability of our scheme for a linear stochastic differential equation with single and multiplicative commutative noise terms is studied. Stability analysis shows that the mean-square stability of our proposed scheme contains the mean-square stability region of the linear scalar test equation for suitable values of parameters $ \alpha, \beta $. Finally, numerical examples illustrate the effectiveness of the theoretical results.
Citation: Hassan Ranjbar, Leila Torkzadeh, Dumitru Baleanu, Kazem Nouri. Simulating systems of Itô SDEs with split-step $ (\alpha, \beta) $-Milstein scheme[J]. AIMS Mathematics, 2023, 8(2): 2576-2590. doi: 10.3934/math.2023133
In the present study, we provide a new approximation scheme for solving stochastic differential equations based on the explicit Milstein scheme. Under sufficient conditions, we prove that the split-step $ (\alpha, \beta) $-Milstein scheme strongly convergence to the exact solution with order $ 1.0 $ in mean-square sense. The mean-square stability of our scheme for a linear stochastic differential equation with single and multiplicative commutative noise terms is studied. Stability analysis shows that the mean-square stability of our proposed scheme contains the mean-square stability region of the linear scalar test equation for suitable values of parameters $ \alpha, \beta $. Finally, numerical examples illustrate the effectiveness of the theoretical results.
[1] | Z. Korpinar, M. Inc, A. S. Alshomrani, D. Baleanu, The deterministic and stochastic solutions of the Schrödinger equation with time conformable derivative in birefrigent fibers, AIMS Mathematics, 5 (2020), 2326–2345. https://doi.org/10.3934/math.2020154 doi: 10.3934/math.2020154 |
[2] | K. Nouri, H. Ranjbar, L. Torkzadeh, The explicit approximation approach to solve stiff chemical langevin equations, Eur. Phys. J. Plus, 135 (2020), 758. https://doi.org/10.1140/epjp/s13360-020-00765-2 doi: 10.1140/epjp/s13360-020-00765-2 |
[3] | K. Nouri, H. Ranjbar, D. Baleanu, L. Torkzadeh, Investigation on ginzburg-landau equation via a tested approach to benchmark stochastic davis-skodje system, Alexandria Eng. J., 60 (2021), 5521–5526. https://doi.org/10.1016/j.aej.2021.04.040 doi: 10.1016/j.aej.2021.04.040 |
[4] | D. J. Higham, P. E. Kloeden, An introduction to the numerical simulation of stochastic differential equations, Society for Industrial and Applied Mathematics, 2021. |
[5] | K. Nouri, F. Fahimi, L. Torkzadeh, D. Baleanu, Stochastic epidemic model of Covid-19 via the reservoir-people transmission network, Comput. Mater. Contin., 72 (2022), 1495–1514. https://doi.org/10.32604/cmc.2022.024406 doi: 10.32604/cmc.2022.024406 |
[6] | P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, In: Applications of mathematics, Berlin: Springer-Verlag, 23 (1992). |
[7] | X. Mao, Stochastic differential equations and applications, Chichester: Horwood Publishing Limited, 2008. |
[8] | K. Nouri, F. Fahimi, L. Torkzadeh, D. Baleanu, Numerical method for pricing discretely monitored double barrier option by orthogonal projection method, AIMS Mathematics, 6 (2021), 5750–5761. https://doi.org/10.3934/math.2021339 doi: 10.3934/math.2021339 |
[9] | G. N. Milstein, Approximate integration of stochastic differential equations, Theory Prob. Appl., 19 (1975), 557–562. https://doi.org/10.1137/1119062 doi: 10.1137/1119062 |
[10] | P. Wang, Z. Liu, Split-step backward balanced Milstein methods for stiff stochastic systems, Appl. Numer. Math., 59 (2009), 1198–1213. https://doi.org/10.1016/j.apnum.2008.06.001 doi: 10.1016/j.apnum.2008.06.001 |
[11] | D. A. Voss, A. Q. M. Khaliq, Split-step Adams-Moulton Milstein methods for systems of stiff stochastic differential equations, Int. J. Comput. Math., 92 (2015), 995–1011. https://doi.org/10.1080/00207160.2014.915963 doi: 10.1080/00207160.2014.915963 |
[12] | F. Jiang, X. Zong, C. Yue, C. Huang, Double-implicit and split two-step Milstein schemes for stochastic differential equations, Int. J. Comput. Math., 93 (2016), 1987–2011. https://doi.org/10.1080/00207160.2015.1081182 doi: 10.1080/00207160.2015.1081182 |
[13] | S. S. Ahmad, N. Chandra Parida, S. Raha, The fully implicit stochastic-$\alpha$ method for stiff stochastic differential equations, J. Comput. Phys., 228 (2009), 8263–8282. https://doi.org/10.1016/j.jcp.2009.08.002 doi: 10.1016/j.jcp.2009.08.002 |
[14] | V. Reshniak, A. Q. M. Khaliq, D. A. Voss, G. Zhang, Split-step Milstein methods for multi-channel stiff stochastic differential systems, Appl. Numer. Math., 89 (2015), 1–23. https://doi.org/10.1016/j.apnum.2014.10.005 doi: 10.1016/j.apnum.2014.10.005 |
[15] | T. Tripura, M. Imran, B. Hazra, S. Chakraborty, Change of measure enhanced nearexact euler-maruyama scheme for the solution to nonlinear stochastic dynamical systems, J. Eng. Mech., 148 (2022). http://doi.org/10.1061/(ASCE)EM.1943-7889.0002107 |
[16] | X. Wang, S. Gan, D. Wang, A family of fully implicit Milstein methods for stiff stochastic differential equations with multiplicative noise, BIT, 52 (2012), 741–772. https://doi.org/10.1007/s10543-012-0370-8 doi: 10.1007/s10543-012-0370-8 |
[17] | M. S. Semary, M. T. M. Elbarawy, A. F. Fareed, Discrete Temimi-Ansari method for solving a class of stochastic nonlinear differential equations, AIMS Mathematics, 7 (2022), 5093–5105. https://doi.org/10.3934/math.2022283 doi: 10.3934/math.2022283 |
[18] | J. Yao, S. Gan, Stability of the drift-implicit and double-implicit Milstein schemes for nonlinear SDEs, Appl. Math. Comput., 339 (2018), 294–301. https://doi.org/10.1016/j.amc.2018.07.026 doi: 10.1016/j.amc.2018.07.026 |
[19] | Z. Yin, S. Gan, An improved Milstein method for stiff stochastic differential equations, Adv. Differ. Equ., 369 (2015). http://doi.org/10.1186/s13662-015-0699-9 |
[20] | R. Kasinathan, R. Kasinathan, D. Baleanu, A. Annamalai, Well posedness of second-order impulsive fractional neutral stochastic differential equations, AIMS Mathematics, 6 (2021), 9222–9235. https://doi.org/10.3934/math.2021536 doi: 10.3934/math.2021536 |
[21] | X. Zong, F. Wu, C. Huang, Convergence and stability of the semi-tamed Euler scheme for stochastic differential equations with non-Lipschitz continuous coefficients, Appl. Math. Comput. 228 (2014), 240–250. https://doi.org/10.1016/j.amc.2013.11.100 |
[22] | Y. Saito, T. Mitsui, Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal., 33 (1996), 2254–2267. https://doi.org/10.1137/S0036142992228409 doi: 10.1137/S0036142992228409 |
[23] | Y. Saito, T. Mitsui, Mean-square stability of numerical schemes for stochastic differential systems, Vietnam J. Math., 30 (2002), 551–560. |
[24] | E. Buckwar, C. Kelly, Towards a systematic linear stability analysis of numerical methods for systems of stochastic differential equations, SIAM J. Numer. Anal., 48 (2010), 298–321. https://doi.org/10.1137/090771843 doi: 10.1137/090771843 |
[25] | E. Buckwar, T. Sickenberger, A structural analysis of asymptotic mean-square stability for multi-dimensional linear stochastic differential systems, Appl. Numer. Math., 62 (2012), 842–859. https://doi.org/10.1016/j.apnum.2012.03.002 doi: 10.1016/j.apnum.2012.03.002 |
[26] | D. J. Higham, A-stability and stochastic mean-square stability, BIT, 40 (2000), 404–409. http://doi.org/10.1023/A:1022355410570 doi: 10.1023/A:1022355410570 |
[27] | A. Tocino, M. J. Senosiain, MS-stability of nonnormal stochastic differential systems, J. Comput. Appl. Math., 379 (2020), 112950. https://doi.org/10.1016/j.cam.2020.112950 doi: 10.1016/j.cam.2020.112950 |
[28] | D. J. Higham, X. Mao, L. Szpruch, Convergence, non-negativity and stability of a new Milstein scheme with applications to finance, Discrete Contin. Dyn. B, 18 (2013), 2083–2100. https://doi.org/10.3934/dcdsb.2013.18.2083 doi: 10.3934/dcdsb.2013.18.2083 |
[29] | X. Zong, F. Wu, G. Xu, Convergence and stability of two classes of theta-Milstein schemes for stochastic differential equations, J. Comput. Appl. Math., 336 (2018), 8–29. https://doi.org/10.1016/j.cam.2017.12.025 doi: 10.1016/j.cam.2017.12.025 |
[30] | K. Nouri, H. Ranjbar, L. Torkzadeh, Improved Euler-Maruyama method for numerical solution of the Itô stochastic differential systems by composite previous-current-step idea, Mediterr. J. Math., 15 (2018), 140. |
[31] | K. Nouri, H. Ranjbar, L. Torkzadeh, Modified stochastic theta methods by ODEs solvers for stochastic differential equations, Commun. Nonlinear Sci. Numer. Simul., 68 (2019), 336–346. https://doi.org/10.1016/j.cnsns.2018.08.013 doi: 10.1016/j.cnsns.2018.08.013 |
[32] | K. Nouri, H. Ranjbar, L. Torkzadeh, Study on split-step Rosenbrock type method for stiff stochastic differential systems, Int. J. Comput. Math., 97 (2020), 816–836. https://doi.org/10.1080/00207160.2019.1589459 doi: 10.1080/00207160.2019.1589459 |
[33] | G. N. Milstein, M. V. Tretyakov, Stochastic numerics for mathematical physics, Berlin: Springer-Verlag, 2004. |
[34] | S. Singh, S. Raha, Five-stage milstein methods for SDEs, Int. J. Comput. Math., 89 (2012), 760–779. http://doi.org/10.1080/00207160.2012.657629 doi: 10.1080/00207160.2012.657629 |