In this article, the existence of a solution to a system of fractional equations of sequential type was investigated via Mönch's fixed point theorem. In addition, the stability of this solutions was verified by the Ulam-Hyers method. Finally, an applied example is presented to illustrate the theoretical results obtained from the existence results.
Citation: Abeer Al Elaiw, Murugesan Manigandan, Muath Awadalla, Kinda Abuasbeh. Mönch's fixed point theorem in investigating the existence of a solution to a system of sequential fractional differential equations[J]. AIMS Mathematics, 2023, 8(2): 2591-2610. doi: 10.3934/math.2023134
In this article, the existence of a solution to a system of fractional equations of sequential type was investigated via Mönch's fixed point theorem. In addition, the stability of this solutions was verified by the Ulam-Hyers method. Finally, an applied example is presented to illustrate the theoretical results obtained from the existence results.
[1] | D. Hinton, Handbook of differential equations, SIAM Rev., 36 (1994), 126–127, |
[2] | K. B. Oldham, J. Spanier, The fractional calculus, Academic Press, 1974. |
[3] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[4] | S. G. Samko, A. A Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, 1993. |
[5] | A. Refice, M. S. Souid, I. Stamova, On the boundary value problems of Hadamard fractional differential equations of variable order via Kuratowski MNC technique, Mathematics, 9 (2021), 1134. https://doi.org/10.3390/MATH9101134 doi: 10.3390/MATH9101134 |
[6] | Y. Alruwaily, B. Ahmad, S. K. Ntouyas, A. S. Alzaidi, Existence results for coupled nonlinear sequential fractional differential equations with coupled Riemann-Stieltjes Integro-Multipoint boundary conditions, Fractal Fract., 6 (2022), 123. https://doi.org/10.3390/fractalfract6020123 doi: 10.3390/fractalfract6020123 |
[7] | B. Ahmad, A. F. Albideewi, S. K. Ntouyas, A. Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations, Cubo, 23 (2021), 225–237. https://doi.org/10.4067/s0719-06462021000200225 doi: 10.4067/s0719-06462021000200225 |
[8] | S. Y. Al-Mayyahi, M. S. Abdo, S. S. Redhwan, B. N. Abood, Boundary value problems for a coupled system of Hadamard-type fractional differential equations, Int. J. Appl. Math., 51 (2021), 1–10. https://doi.org/10.1016/J.CHAOS.2016.05.005 doi: 10.1016/J.CHAOS.2016.05.005 |
[9] | S. Aljoudi, B. Ahmad, J. J. Nieto, A. Alsaedi, A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions, Chaos Solitons Fract., 91 (2016), 39–46. https://doi.org/10.1016/J.CHAOS.2016.05.005 doi: 10.1016/J.CHAOS.2016.05.005 |
[10] | J. Tariboon, S. K. Ntouyas, S. Asawasamrit, C. Promsakon, Positive solutions for Hadamard differential systems with fractional integral conditions on an unbounded domain, Open Math., 15 (2017), 645–666. https://doi.org/10.1515/math-2017-0057 doi: 10.1515/math-2017-0057 |
[11] | S. Aljoudi, B. Ahmad, J. J. Nieto, A. Alsaedi, On coupled Hadamard type sequential fractional differential equations with variable coefficients and nonlocal integral boundary conditions, Filomat, 31 (2017), 6041–6049. https://doi.org/10.2298/FIL1719041A doi: 10.2298/FIL1719041A |
[12] | C. Zhai, W. Wang, H. Li, A uniqueness method to a new Hadamard fractional differential system with four-point boundary conditions, J. Inequal. Appl., 2018 (2018), 207. https://doi.org/10.1186/s13660-018-1801-0 doi: 10.1186/s13660-018-1801-0 |
[13] | X. Du, Y. Meng, H. Pang, Iterative positive solutions to a coupled Hadamard-type fractional differential system on infinite domain with the multistrip and multipoint mixed boundary conditions, J. Funct. Spaces, 2020 (2020), 6508075. https://doi.org/10.1155/2020/6508075 doi: 10.1155/2020/6508075 |
[14] | L. Ma, On the kinetics of Hadamard-type fractional differential systems, Fract. Calc. Appl. Anal., 23 (2020), 553–570. https://doi.org/10.1515/fca-2020-0027 doi: 10.1515/fca-2020-0027 |
[15] | M. Arab, M. Awadalla, A coupled system of Caputo-Hadamard fractional hybrid differential equations with three-point boundary conditions, Math. Probl. Eng., 2022 (2022), 1500577. https://doi.org/10.1155/2022/1500577 doi: 10.1155/2022/1500577 |
[16] | M. Awadalla, Applicability of Mönch's fixed point theorem on existence of a solution to a system of mixed sequential fractional differential equation, J. Funct. Spaces, 2022 (2022), 5807120. https://doi.org/10.1155/2022/5807120 doi: 10.1155/2022/5807120 |
[17] | C. Ionescu, A. Lopes, D. Copot, J. T. Machado, J. H. Bates, The role of fractional calculus in modeling biological phenomena: a review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001 |
[18] | R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586–1593. https://doi.org/10.1016/j.camwa.2009.08.039 doi: 10.1016/j.camwa.2009.08.039 |
[19] | R. Toledo-Hernandez, V. Rico-Ramirez, G. A. Iglesias-Silva, U. M. Diwekar, A fractional calculus approach to the dynamic optimization of biological reactive systems, Chem. Eng. Sci., 117 (2014), 217–228. https://doi.org/10.1016/J.CES.2014.06.034 doi: 10.1016/J.CES.2014.06.034 |
[20] | H. Khan, C. Tunc, W. Chen, A. Khan, Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with $p$-Laplacian operator, J. Appl. Anal. Comput., 8 (2018), 1211–1226. https://doi.org/10.11948/2018.1211 doi: 10.11948/2018.1211 |
[21] | M. Awadalla, M. Manigandan, Existence and stability results for Caputo-type sequential fractional differential equations with new kind of boundary conditions, Math. Probl. Eng., 2022 (2022), 3999829. https://doi.org/10.1155/2022/3999829 doi: 10.1155/2022/3999829 |
[22] | S. Muthaiah, D. Baleanu, M. Murugesan, D. Palanisamy, Existence of solutions for the Caputo-Hadamard fractional differential equations and inclusions, J. Phys. Conf. Ser., 1850 (2021), 012107. https://doi.org/10.1088/1742-6596/1850/1/012107 doi: 10.1088/1742-6596/1850/1/012107 |
[23] | S. Ferraoun, Z. Dahmani, Existence and stability of solutions of a class of hybrid fractional differential equations involving RL-operator, J. Interdiscip. Math., 23 (2020), 885–903. https://doi.org/10.1080/09720502.2020.1727617 doi: 10.1080/09720502.2020.1727617 |
[24] | A. Al Elaiw, M. M. Awadalla, M. Manigandan, K. Abuasbeh, A novel implementation of Mönch's fixed point theorem to a system of nonlinear Hadamard fractional differential equations, Fractal Fract., 6 (2022), 586. https://doi.org/10.3390/fractalfract6100586 doi: 10.3390/fractalfract6100586 |
[25] | W. Al-Sadi, Z. Y. Huang, A. Alkhazzan, Existence and stability of a positive solution for nonlinear hybrid fractional differential equations with singularity, J. Taibah Univ. Sci., 13 (2019), 951–960. https://doi.org/10.1080/16583655.2019.1663783 doi: 10.1080/16583655.2019.1663783 |
[26] | M. Subramanian, M. Manigandan, T. N. Gopal, Fractional differential equations involving Hadamard fractional derivatives with nonlocal multi-point boundary conditions, Discontinuity Nonlinearity Complexity, 9 (2020), 421–431. https://doi.org/10.5890/dnc.2020.09.006 doi: 10.5890/dnc.2020.09.006 |
[27] | M. Awadalla, K. Abuasbeh, M. Subramanian, M. Manigandan, On a system of $\psi$-Caputo hybrid fractional differential equations with dirichlet boundary conditions, Mathematics, 10 (2022), 1681. https://doi.org/10.3390/math10101681 doi: 10.3390/math10101681 |
[28] | M. Manigandan, M. Subramanian, P. Duraisamy, T. N. Gopal, On Caputo-Hadamard type fractional differential equations with nonlocal discrete boundary conditions, Discontinuity Nonlinearity Complexity, 10 (2021), 185–194. https://doi.org/10.5890/DNC.2021.06.002 doi: 10.5890/DNC.2021.06.002 |
[29] | M. Manigandan, S. Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran, Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order, AIMS Math., 7 (2022), 723–755. https://doi.org/10.3934/math.2022045 doi: 10.3934/math.2022045 |
[30] | M. Manigandan, M. Subramanian, T. N. Gopal, B. Unyong, Existence and stability results for a tripled system of the Caputo type with multi-point and integral boundary conditions, Fractal Fract., 6 (2022), 285. https://doi.org/10.3390/fractalfract6060285 doi: 10.3390/fractalfract6060285 |
[31] | F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142 |
[32] | M. Awadalla, N. I. Mahmudov, On system of mixed fractional hybrid differential equations, J. Funct. Spaces, 2022 (2022), 1258823. https://doi.org/10.1155/2022/1258823 doi: 10.1155/2022/1258823 |
[33] | N. I. Mahmudov, M. Awadalla, K. Abuassba, Nonlinear sequential fractional differential equations with nonlocal boundary conditions, Adv. Differ. Equ., 2017 (2017), 319. https://doi.org/10.1186/s13662-017-1371-3 doi: 10.1186/s13662-017-1371-3 |
[34] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Fractional differential equations: A emergent field in applied and mathematical sciences, Springer, 2003. https://doi.org/10.1007/978-94-017-0227-0-11 |
[35] | M. Benchohra, J. Henderson, D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal., 12 (2008), 419–428. |
[36] | D. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, Springer Science and Business Media, 2013. https://doi.org/10.1007/978-1-4613-1281-9 |
[37] | E. Zeidler, Nonlinear functional analysis and its applications, Springer, 1989. https://doi.org/10.1007/978-1-4612-0985-0 |
[38] | H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. Theory Methods Appl., 4 (1980), 985–999. https://doi.org/10.1016/0362-546X(80)90010-3 doi: 10.1016/0362-546X(80)90010-3 |
[39] | P. Kumar, V. Govindaraj, Z. A. Khan, Some novel mathematical results on the existence and uniqueness of generalized Caputo-type initial value problems with delay, AIMS Math., 7 (2022), 10483–10494. https://doi.org/10.3934/math.2022584 doi: 10.3934/math.2022584 |
[40] | M. Hakimeh, R. Shahram, E. Sina, B. Dumitru, Two sequential fractional hybrid differential inclusions, Adv. Differ. Equ., 2020 (2020), 385. https://doi.org/10.1186/s13662-020-02850-3 doi: 10.1186/s13662-020-02850-3 |
[41] | S. Rezapour, B. Tellab, C. T. Deressa, S. Etemad, K. Nonlaopon, HU-type stability and numerical solutions for a nonlinear model of the coupled systems of Navier BVPs via the generalized differential transform method. Fractal Fract., 5 (2021), 166. https://doi.org/10.3390/fractalfract5040166 doi: 10.3390/fractalfract5040166 |
[42] | S. Etemad, M. M. Matar, M. A. Ragusa, S. Rezapour, Tripled fixed points and existence study to a tripled impulsive fractional differential system via measures of noncompactness, Mathematics, 10 (2022), 25. https://doi.org/10.3390/math10010025 doi: 10.3390/math10010025 |
[43] | R. P. Agarwal, J. P. C. Dos Santos, C. Cuevas, Analytic resolvent operator and existence results for fractional integro-differential equations, J. Abstr. Differ. Equ. Appl., 2 (2012), 26–47. |