Research article Special Issues

Vanishing viscosity limit of incompressible flow around a small obstacle: A special case

  • Received: 13 September 2022 Revised: 27 October 2022 Accepted: 01 November 2022 Published: 08 November 2022
  • MSC : 35Q30, 76D05, 76D10

  • In this paper, we consider two dimensional viscous flow around a small obstacle. In [4], the authors proved that the solutions of the Navier-Stokes system around a small obstacle of size $ \varepsilon $ converge to solutions of the Euler system in the whole space under the condition that the size of the obstacle $ \varepsilon $ is smaller than a suitable constant $ K $ times the kinematic viscosity $ \nu $. We show that, if the Euler flow is antisymmetric, then this smallness condition can be removed.

    Citation: Xiaoguang You. Vanishing viscosity limit of incompressible flow around a small obstacle: A special case[J]. AIMS Mathematics, 2023, 8(2): 2611-2621. doi: 10.3934/math.2023135

    Related Papers:

  • In this paper, we consider two dimensional viscous flow around a small obstacle. In [4], the authors proved that the solutions of the Navier-Stokes system around a small obstacle of size $ \varepsilon $ converge to solutions of the Euler system in the whole space under the condition that the size of the obstacle $ \varepsilon $ is smaller than a suitable constant $ K $ times the kinematic viscosity $ \nu $. We show that, if the Euler flow is antisymmetric, then this smallness condition can be removed.



    加载中


    [1] J. Y. Chemin, A remark on the inviscid limit for two-dimensional incompressible fluids, Commun. Part. Diff. Eq., 21 (1996), 1771–1779. https://doi.org/10.1080/03605309608821245 doi: 10.1080/03605309608821245
    [2] T. Clopeau, A. Mikelic, R. Robert, On the vanishing viscosity limit for the 2D incompressible navier-stokes equations with the friction type boundary conditions, Nonlinearity, 11 (1998), 1625–1636. https://doi.org/10.1088/0951-7715/11/6/011 doi: 10.1088/0951-7715/11/6/011
    [3] D. G. Ebin, J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92 (1970), 102–163. https://doi.org/10.2307/1970699 doi: 10.2307/1970699
    [4] D. Iftimie, M. C. Lopes Filho, H. J. Nussenzveig Lopes, Incompressible flow around a small obstacle and the vanishing viscosity limit, Commun. Math. Phys., 287 (2009), 99–115. https://doi.org/10.1007/s00220-008-0621-3 doi: 10.1007/s00220-008-0621-3
    [5] T. Kato, Nonstationary flows of viscous and ideal fluids in $R^{3}$, J. Funct. Anal., 9 (1972), 296–305. https://doi.org/10.1016/0022-1236(72)90003-1 doi: 10.1016/0022-1236(72)90003-1
    [6] H. Kozono, Local and global solvability of the Navier-Stokes exterior problem with cauchy data in the space $l^{n, \infty}$, Houston J. Math., 21 (1995), 755–799.
    [7] M. C. Lopes Filho, A. Mazzucato, H. J. Nussenzveig Lopes, M. Taylor, Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows, Bull. Braz. Math. Soc. New Series, 39 (2008), 471–513. https://doi.org/10.1007/s00574-008-0001-9 doi: 10.1007/s00574-008-0001-9
    [8] M. C. Lopes Filho, H. J. Nussenzveig Lopes, G. Planas, On the inviscid limit for two-dimensional incompressible flow with Navier friction condition, SIAM J. Math. Anal., 36 (2005), 1130–1141. https://doi.org/10.1137/S0036141003432341 doi: 10.1137/S0036141003432341
    [9] A. J. Majda, A. L. Bertozzi, Vorticity and incompressible flow, Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511613203
    [10] S. Matsui, Example of zero viscosity limit for two dimensional nonstationary navier-stokes flows with boundary, Japan J. Indust. Appl. Math., 11 (1994), 155. https://doi.org/10.1007/BF03167219 doi: 10.1007/BF03167219
    [11] F. J. McGrath, Nonstationary plane flow of viscous and ideal fluids, Arch. Rational Mech. Anal., 27 (1968), 329–348. https://doi.org/10.1007/BF00251436 doi: 10.1007/BF00251436
    [12] H. S. G. Swann, The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in $R^{3}$, T. Am. Math. Soc., 157 (1971), 373–397. https://doi.org/10.2307/1995853 doi: 10.2307/1995853
    [13] T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, In: Seminar on nonlinear partial differential equations, New York: Springer, 1984. https://doi.org/10.1007/978-1-4612-1110-5_6
    [14] R. Temam, X. Wang, Boundary layers in channel flow with injection and suction, Appl. Math. Lett., 14 (2001), 87–91. https://doi.org/10.1016/S0893-9659(00)00117-8 doi: 10.1016/S0893-9659(00)00117-8
    [15] Y. Xiao, Z. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Commun. Pur. Appl. Math., 60 (2007), 1027–1055. https://doi.org/10.1002/cpa.20187 doi: 10.1002/cpa.20187
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1270) PDF downloads(108) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog