In this paper, we consider two dimensional viscous flow around a small obstacle. In [
Citation: Xiaoguang You. Vanishing viscosity limit of incompressible flow around a small obstacle: A special case[J]. AIMS Mathematics, 2023, 8(2): 2611-2621. doi: 10.3934/math.2023135
In this paper, we consider two dimensional viscous flow around a small obstacle. In [
[1] | J. Y. Chemin, A remark on the inviscid limit for two-dimensional incompressible fluids, Commun. Part. Diff. Eq., 21 (1996), 1771–1779. https://doi.org/10.1080/03605309608821245 doi: 10.1080/03605309608821245 |
[2] | T. Clopeau, A. Mikelic, R. Robert, On the vanishing viscosity limit for the 2D incompressible navier-stokes equations with the friction type boundary conditions, Nonlinearity, 11 (1998), 1625–1636. https://doi.org/10.1088/0951-7715/11/6/011 doi: 10.1088/0951-7715/11/6/011 |
[3] | D. G. Ebin, J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92 (1970), 102–163. https://doi.org/10.2307/1970699 doi: 10.2307/1970699 |
[4] | D. Iftimie, M. C. Lopes Filho, H. J. Nussenzveig Lopes, Incompressible flow around a small obstacle and the vanishing viscosity limit, Commun. Math. Phys., 287 (2009), 99–115. https://doi.org/10.1007/s00220-008-0621-3 doi: 10.1007/s00220-008-0621-3 |
[5] | T. Kato, Nonstationary flows of viscous and ideal fluids in $R^{3}$, J. Funct. Anal., 9 (1972), 296–305. https://doi.org/10.1016/0022-1236(72)90003-1 doi: 10.1016/0022-1236(72)90003-1 |
[6] | H. Kozono, Local and global solvability of the Navier-Stokes exterior problem with cauchy data in the space $l^{n, \infty}$, Houston J. Math., 21 (1995), 755–799. |
[7] | M. C. Lopes Filho, A. Mazzucato, H. J. Nussenzveig Lopes, M. Taylor, Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows, Bull. Braz. Math. Soc. New Series, 39 (2008), 471–513. https://doi.org/10.1007/s00574-008-0001-9 doi: 10.1007/s00574-008-0001-9 |
[8] | M. C. Lopes Filho, H. J. Nussenzveig Lopes, G. Planas, On the inviscid limit for two-dimensional incompressible flow with Navier friction condition, SIAM J. Math. Anal., 36 (2005), 1130–1141. https://doi.org/10.1137/S0036141003432341 doi: 10.1137/S0036141003432341 |
[9] | A. J. Majda, A. L. Bertozzi, Vorticity and incompressible flow, Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511613203 |
[10] | S. Matsui, Example of zero viscosity limit for two dimensional nonstationary navier-stokes flows with boundary, Japan J. Indust. Appl. Math., 11 (1994), 155. https://doi.org/10.1007/BF03167219 doi: 10.1007/BF03167219 |
[11] | F. J. McGrath, Nonstationary plane flow of viscous and ideal fluids, Arch. Rational Mech. Anal., 27 (1968), 329–348. https://doi.org/10.1007/BF00251436 doi: 10.1007/BF00251436 |
[12] | H. S. G. Swann, The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in $R^{3}$, T. Am. Math. Soc., 157 (1971), 373–397. https://doi.org/10.2307/1995853 doi: 10.2307/1995853 |
[13] | T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, In: Seminar on nonlinear partial differential equations, New York: Springer, 1984. https://doi.org/10.1007/978-1-4612-1110-5_6 |
[14] | R. Temam, X. Wang, Boundary layers in channel flow with injection and suction, Appl. Math. Lett., 14 (2001), 87–91. https://doi.org/10.1016/S0893-9659(00)00117-8 doi: 10.1016/S0893-9659(00)00117-8 |
[15] | Y. Xiao, Z. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Commun. Pur. Appl. Math., 60 (2007), 1027–1055. https://doi.org/10.1002/cpa.20187 doi: 10.1002/cpa.20187 |