Research article

Tikhonov-type regularization method for a sideways problem of the time-fractional diffusion equation

  • Received: 22 July 2020 Accepted: 24 September 2020 Published: 29 September 2020
  • MSC : 65N20, 65N21

  • A sideways problem of the time-fractional diffusion equation is investigated. The solution of this problem does not depend on the given data. In view of this, this article uses a Tikhonov-type regularized method to construct an approximate solution and overcome the ill-posedness of considered problem. The a-posteriori convergence estimates of logarithmic and double logarithmic types for the regularized method are derived. Finally, for smooth and non-smooth cases we respectively verify the effectiveness of proposed method by doing the coresponding numerical experiments.

    Citation: Hongwu Zhang, Xiaoju Zhang. Tikhonov-type regularization method for a sideways problem of the time-fractional diffusion equation[J]. AIMS Mathematics, 2021, 6(1): 90-101. doi: 10.3934/math.2021007

    Related Papers:

  • A sideways problem of the time-fractional diffusion equation is investigated. The solution of this problem does not depend on the given data. In view of this, this article uses a Tikhonov-type regularized method to construct an approximate solution and overcome the ill-posedness of considered problem. The a-posteriori convergence estimates of logarithmic and double logarithmic types for the regularized method are derived. Finally, for smooth and non-smooth cases we respectively verify the effectiveness of proposed method by doing the coresponding numerical experiments.


    加载中


    [1] S. Das, I. Pan, Fractional order signal processing, Heidelberg: Springer, 2012.
    [2] F. Mainardi, Fractional calculus and waves in linear viscoelasticity, London: Imperial College Press, 2010.
    [3] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77. doi: 10.1016/S0370-1573(00)00070-3
    [4] I. Podlubny, Fractional differential equations, San Diego: Academic Press Inc., 1999.
    [5] Y. Povstenko, Fractional thermoelasticity, Cham: Springer, 2015.
    [6] J. Sabatier, P. Lanusse, P. Melchior, A. Oustaloup, Fractional order differentiation and robust control design, Dordrecht: Springer, 2015.
    [7] E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance, Physica A, 284 (2000), 376-384. doi: 10.1016/S0378-4371(00)00255-7
    [8] V. V. Uchaikin, Fractional derivatives for physicists and engineers, Heidelberg: Springer, 2013.
    [9] D. A. Murio, Stable numerical solution of a fractional-diffusion inverse heat conduction problem, Comput. Math. Appl., 53 (2007), 1492-1501. doi: 10.1016/j.camwa.2006.05.027
    [10] D. A. Murio, Time fractional IHCP with Caputo fractional derivatives, Comput. Math. Appl., 56 (2008), 2371-2381. doi: 10.1016/j.camwa.2008.05.015
    [11] G. H. Zheng, T. Wei, Spectral regularization method for the time fractional inverse advectiondispersion equation, Math. Comput. Simulat., 81 (2010), 37-51. doi: 10.1016/j.matcom.2010.06.017
    [12] G. H. Zheng, T. Wei, Spectral regularization method for solving a time-fractional inverse diffusion problem, Appl. Math. Comput., 218 (2011), 396-405.
    [13] M. Li, X. X. Xi, X. T. Xiong, Regularization for a fractional sideways heat equation, J. Comput. Appl. Math., 255 (2014), 28-43. doi: 10.1016/j.cam.2013.04.035
    [14] X. T. Xiong, Q. Zhou, Y. C. Hon, An inverse problem for fractional diffusion equation in 2- dimensional case: Stability analysis and regularization, J. Math. Anal. Appl., 393 (2012), 185-199. doi: 10.1016/j.jmaa.2012.03.013
    [15] X. T. Xiong, H. B. Guo, X. H. Liu, An inverse problem for a fractional diffusion equation, J. Comput. Appl. Math., 236 (2012), 4474-4484. doi: 10.1016/j.cam.2012.04.019
    [16] G. H. Zheng, T. Wei, A new regularization method for the time fractional inverse advectiondispersion problem, SIAM J. Numer. Anal., 49 (2011), 1972-1990. doi: 10.1137/100783042
    [17] G. H. Zheng, T. Wei, A new regularization method for solving a time-fractional inverse diffusion problem, J. Math. Anal. Appl., 378 (2011), 418-431. doi: 10.1016/j.jmaa.2011.01.067
    [18] U. Tautenhahn, U. Hämarik, B. Hofmann, Y. Shao, Conditional stability estimates for ill-posed pdeproblems by using interpolation, Numer. Funct. Anal. Optim., 34 (2013), 1370-1417. doi: 10.1080/01630563.2013.819515
    [19] C. Shi, C. Wang, G. H. Zheng, T. Wei, A new a posteriori parameter choice strategy for the convolution regularization of the space-fractional backward diffusion problem, J. Comput. Appl. Math., 279 (2015), 233-248. doi: 10.1016/j.cam.2014.11.013
    [20] V. A. Morozov, Z. Nashed, A. B. Aries, Methods for solving incorrectly posed problems, New York: Springer, 1984.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3200) PDF downloads(178) Cited by(4)

Article outline

Figures and Tables

Figures(2)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog