Citation: Hongwu Zhang, Xiaoju Zhang. Tikhonov-type regularization method for a sideways problem of the time-fractional diffusion equation[J]. AIMS Mathematics, 2021, 6(1): 90-101. doi: 10.3934/math.2021007
[1] | S. Das, I. Pan, Fractional order signal processing, Heidelberg: Springer, 2012. |
[2] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity, London: Imperial College Press, 2010. |
[3] | R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77. doi: 10.1016/S0370-1573(00)00070-3 |
[4] | I. Podlubny, Fractional differential equations, San Diego: Academic Press Inc., 1999. |
[5] | Y. Povstenko, Fractional thermoelasticity, Cham: Springer, 2015. |
[6] | J. Sabatier, P. Lanusse, P. Melchior, A. Oustaloup, Fractional order differentiation and robust control design, Dordrecht: Springer, 2015. |
[7] | E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance, Physica A, 284 (2000), 376-384. doi: 10.1016/S0378-4371(00)00255-7 |
[8] | V. V. Uchaikin, Fractional derivatives for physicists and engineers, Heidelberg: Springer, 2013. |
[9] | D. A. Murio, Stable numerical solution of a fractional-diffusion inverse heat conduction problem, Comput. Math. Appl., 53 (2007), 1492-1501. doi: 10.1016/j.camwa.2006.05.027 |
[10] | D. A. Murio, Time fractional IHCP with Caputo fractional derivatives, Comput. Math. Appl., 56 (2008), 2371-2381. doi: 10.1016/j.camwa.2008.05.015 |
[11] | G. H. Zheng, T. Wei, Spectral regularization method for the time fractional inverse advectiondispersion equation, Math. Comput. Simulat., 81 (2010), 37-51. doi: 10.1016/j.matcom.2010.06.017 |
[12] | G. H. Zheng, T. Wei, Spectral regularization method for solving a time-fractional inverse diffusion problem, Appl. Math. Comput., 218 (2011), 396-405. |
[13] | M. Li, X. X. Xi, X. T. Xiong, Regularization for a fractional sideways heat equation, J. Comput. Appl. Math., 255 (2014), 28-43. doi: 10.1016/j.cam.2013.04.035 |
[14] | X. T. Xiong, Q. Zhou, Y. C. Hon, An inverse problem for fractional diffusion equation in 2- dimensional case: Stability analysis and regularization, J. Math. Anal. Appl., 393 (2012), 185-199. doi: 10.1016/j.jmaa.2012.03.013 |
[15] | X. T. Xiong, H. B. Guo, X. H. Liu, An inverse problem for a fractional diffusion equation, J. Comput. Appl. Math., 236 (2012), 4474-4484. doi: 10.1016/j.cam.2012.04.019 |
[16] | G. H. Zheng, T. Wei, A new regularization method for the time fractional inverse advectiondispersion problem, SIAM J. Numer. Anal., 49 (2011), 1972-1990. doi: 10.1137/100783042 |
[17] | G. H. Zheng, T. Wei, A new regularization method for solving a time-fractional inverse diffusion problem, J. Math. Anal. Appl., 378 (2011), 418-431. doi: 10.1016/j.jmaa.2011.01.067 |
[18] | U. Tautenhahn, U. Hämarik, B. Hofmann, Y. Shao, Conditional stability estimates for ill-posed pdeproblems by using interpolation, Numer. Funct. Anal. Optim., 34 (2013), 1370-1417. doi: 10.1080/01630563.2013.819515 |
[19] | C. Shi, C. Wang, G. H. Zheng, T. Wei, A new a posteriori parameter choice strategy for the convolution regularization of the space-fractional backward diffusion problem, J. Comput. Appl. Math., 279 (2015), 233-248. doi: 10.1016/j.cam.2014.11.013 |
[20] | V. A. Morozov, Z. Nashed, A. B. Aries, Methods for solving incorrectly posed problems, New York: Springer, 1984. |