Research article Special Issues

Calibration of time-dependent volatility for European options under the fractional Vasicek model

  • Received: 11 February 2022 Revised: 22 March 2022 Accepted: 23 March 2022 Published: 06 April 2022
  • MSC : 65M32, 91G20, 90C32

  • In this paper, we calibrate the time-dependent volatility function for European options under the fractional Vasicek interest rate model. A fully implicit finite difference method is applied to solve the partial differential equation of option pricing numerically. To find the volatility function, we minimize a cost function that is the sum of the squared errors between the theoretical prices and market prices with Tikhonov $ L_2 $ regularization and $ L_{1/2} $ regularization respectively. Finally numerical experiments with simulated and real market data verify the efficiency of the proposed methods.

    Citation: Jiajia Zhao, Zuoliang Xu. Calibration of time-dependent volatility for European options under the fractional Vasicek model[J]. AIMS Mathematics, 2022, 7(6): 11053-11069. doi: 10.3934/math.2022617

    Related Papers:

  • In this paper, we calibrate the time-dependent volatility function for European options under the fractional Vasicek interest rate model. A fully implicit finite difference method is applied to solve the partial differential equation of option pricing numerically. To find the volatility function, we minimize a cost function that is the sum of the squared errors between the theoretical prices and market prices with Tikhonov $ L_2 $ regularization and $ L_{1/2} $ regularization respectively. Finally numerical experiments with simulated and real market data verify the efficiency of the proposed methods.



    加载中


    [1] F. Black, M. Scholes, The pricing of option and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1086/260062 doi: 10.1086/260062
    [2] W. G. Zhang, Z. Li, Y. J. Liu, Y. Zhang, Pricing European option under fuzzy mixed fractional Brownian motion model with jumps, Comput. Econ., 58 (2021), 483–515. https://doi.org/10.1007/s10614-020-10043-z doi: 10.1007/s10614-020-10043-z
    [3] A. W. Lo, Long-term memory in stock market prices, Econometrica, 59 (1991), 1279–313. https://doi.org/10.2307/2938368 doi: 10.2307/2938368
    [4] S. Sadique, P. Silvapulle, Long-term memory in stock market returns: International evidence, Int. J. Financ. Econ., 6 (2001), 59–67. https://doi.org/10.1002/ijfe.143 doi: 10.1002/ijfe.143
    [5] A. Sensoy, B. M. Tabak, Time-varying long term memory in the European Union stock markets, Physica A, 436 (2015), 147–158. https://doi.org/10.1016/j.physa.2015.05.034 doi: 10.1016/j.physa.2015.05.034
    [6] A. Sensoy, B. M. Tabak, Dynamic effciency of stock markets and exchange rates, Int. Rev. Financial Anal., 47 (2016), 353–371. https://doi.org/10.1016/j.irfa.2016.06.001 doi: 10.1016/j.irfa.2016.06.001
    [7] J. T. Barkoulas, A. G. Barilla, W. Wells, Long-memory exchange rate dynamics in the euroera, Chaos Soliton. Fract., 86 (2016), 92–100. https://doi.org/10.1016/j.chaos.2016.02.007 doi: 10.1016/j.chaos.2016.02.007
    [8] O. A. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ., 5 (1977), 177–188. https://doi.org/10.1016/0304-405X(77)90016-2 doi: 10.1016/0304-405X(77)90016-2
    [9] F. Mehrdoust, A. R. Najaf, Pricing European options under fractional Black-Scholes model with a weak payoff function, Comput. Econ., 52 (2018), 685–706. https://doi.org/10.1007/s10614-017-9715-3 doi: 10.1007/s10614-017-9715-3
    [10] L. C. G. Rogers, Arbitrage with fractional Brownian motion, Math. Financ., 7 (1997), 95–105. https://doi.org/10.1111/1467-9965.00025 doi: 10.1111/1467-9965.00025
    [11] T. E. Duncan, Y. Hu, B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion, SIAM J. Control. Optim., 38 (2000), 582–612. https://doi.org/10.1137/S036301299834171X doi: 10.1137/S036301299834171X
    [12] Y. Hu, B. Øksendal, Fractional white noise calculus and applications to finance, Infin. Dimens. Anal. Qu., 6 (2003), 1–32. https://doi.org/10.1142/S0219025703001110 doi: 10.1142/S0219025703001110
    [13] C. Necula, Option pricing in a fractional brownian motion environment, Math. Rep., 6 (2004), 259–273. https://dx.doi.org/10.2139/ssrn.1286833 doi: 10.2139/ssrn.1286833
    [14] R. C. Merton, On the pricing of corporate debt: The risk structure of interest rates, J. Financ., 29 (1974), 449–470. https://doi.org/10.1111/j.1540-6261.1974.tb03058.x doi: 10.1111/j.1540-6261.1974.tb03058.x
    [15] W. L. Huang, X. X. Tao, S. H. Li, Pricing formulae for European options under the fractional Vasicek interest rate model, Acta Math. Sin., 55 (2012), 219–230.
    [16] Z. L. Xu, X. Y. Jia, The calibration of volatility for option pricing models with jump diffusion processes, Appl. Anal., 98 (2019), 810–827. https://doi.org/10.1080/00036811.2017.1403588 doi: 10.1080/00036811.2017.1403588
    [17] A. Kirsch, An introduction to the mathematical theory of inverse problems, Springer, 2011.
    [18] R. Lagnado, S. Osher, A technique for calibrating derivative security pricing models: Numerical solution of an inverse problem, J. Comput. Financ., 1 (1997), 13–25. https://doi.org/10.21314/JCF.1997.002 doi: 10.21314/JCF.1997.002
    [19] C. Chiarella, M. Craddock, N. El-Hassan, The calibration of stock option pricing models using inverse problem methodology, QFRQ Res. Paper Ser., 2000.
    [20] L. S. Jiang, Y. S. Tao, Identifying the volatility of underlying assets from option prices, Inverse Probl., 17 (2001), 137–155. https://doi.org/10.1088/0266-5611/17/1/311 doi: 10.1088/0266-5611/17/1/311
    [21] P. Ngnepieba, The adjoint method formulation for an inverse problem in the generalized Black-Scholes model, J. Syst. Cybern. Inform., 4 (2006), 69–77.
    [22] S. G. Georgiev, L. G. Vulkov, Fast reconstruction of time-dependent market volatility for European options, Comput. Appl. Math., 40 (2021), 30–48. https://doi.org/10.1007/s40314-021-01422-9 doi: 10.1007/s40314-021-01422-9
    [23] R. Ramlau, C. A. Zarzer, On the minimization of a Tikhonov functional with a non-convex sparsity constraint, Electron. Trans. Numer. Anal., 39 (2012), 476–507.
    [24] Z. B. Xu, X. Y. Chang, H. Zhang, Y. Wang, $L_{1/2}$ regularization, Science China, 2010.
    [25] T. Sun, D. S. Li, Nonconvex low-rank and total-variation regularized model and algorithm for image deblurring, Chinese J. Comput., 43 (2020), 643–652.
    [26] Z. B. Xu, X. Y. Chang, F. M. Xu, H. Zhang, $L_{1/2}$ Regularization: A thresholding representation theory and a fast solver, IEEE T. Neur. Net. Lear., 23 (2012), 1013–1027. https://doi.org/10.1109/TNNLS.2012.2197412 doi: 10.1109/TNNLS.2012.2197412
    [27] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183–202. https://doi.org/10.1137/080716542 doi: 10.1137/080716542
    [28] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327
    [29] X. J. He, S. P. Zhu, How should a local regime-switching model be calibrated? J. Econ. Dyn. Control., 78 (2017), 149–163. https://doi.org/10.1016/j.jedc.2017.03.005
    [30] X. J. He, S. P. Zhu, On full calibration of hybrid local volatility and regime-switching models, J. Futures Markets, 38 (2018), 586–606. https://doi.org/10.1002/fut.21901 doi: 10.1002/fut.21901
    [31] X. J. He, S. Lin, A fractional Black-Scholes model with stochastic volatility and European option pricing, Expert Syst. Appl., 178 (2021), 114983. https://doi.org/10.1016/j.eswa.2021.114983 doi: 10.1016/j.eswa.2021.114983
    [32] X. J. He, W. T. Chen, Pricing foreign exchange options under a hybrid Heston-Cox-Ingersoll-Ross model with regime switching, IMA J. Manag. Math., 33 (2022), 255–272. https://doi.org/10.1093/imaman/dpab013 doi: 10.1093/imaman/dpab013
    [33] X. J. He, S. Lin, An analytical approximation formula for barrier option prices under the Heston model, Comput. Econ., 2021. https://doi.org/10.1007/s10614-021-10186-7
    [34] X. J. He, W. T. Chen, A closed-form pricing formula for European options under a new stochastic volatility model with a stochastic long-term mean, Math. Financ. Econ., 15 (2021), 381–396. https://doi.org/10.1007/s11579-020-00281-y doi: 10.1007/s11579-020-00281-y
    [35] Y. Liu, X. Y. Bai, Investor sentiment, option implied information and prediction of stock market volatility, Secur. Market. Her., 1 (2020), 54–61.
    [36] X. M. Wang, Empirical analysis of Shanghai 50ETF options pricing based on local volatility model, Syst. Eng.-Theor. Pract., 39 (2019), 2487–2501.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1670) PDF downloads(92) Cited by(5)

Article outline

Figures and Tables

Figures(6)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog