Research article

Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis

  • Received: 12 December 2024 Revised: 26 January 2024 Accepted: 06 February 2024 Published: 26 February 2024
  • MSC : 45Dxx, 65Mxx, 44-xx

  • The main purpose of this work was to develop a spectrally accurate collocation method for solving nonlinear fractional Fredholm integro-differential equations (non-FFIDEs). A proposed spectral collocation method is based on the Legendre-Gauss-Lobatto collocation (L-G-LC) method in which the main idea is to use Caputo derivatives and Legendre-Gauss interpolation for nonlinear FFIDEs. A rigorous convergence analysis is provided and confirmed by numerical tests. In addition, we provide some numerical test cases to demonstrate that the approach can preserve the non-smooth solution of the underlying problem.

    Citation: A. H. Tedjani, A. Z. Amin, Abdel-Haleem Abdel-Aty, M. A. Abdelkawy, Mona Mahmoud. Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis[J]. AIMS Mathematics, 2024, 9(4): 7973-8000. doi: 10.3934/math.2024388

    Related Papers:

  • The main purpose of this work was to develop a spectrally accurate collocation method for solving nonlinear fractional Fredholm integro-differential equations (non-FFIDEs). A proposed spectral collocation method is based on the Legendre-Gauss-Lobatto collocation (L-G-LC) method in which the main idea is to use Caputo derivatives and Legendre-Gauss interpolation for nonlinear FFIDEs. A rigorous convergence analysis is provided and confirmed by numerical tests. In addition, we provide some numerical test cases to demonstrate that the approach can preserve the non-smooth solution of the underlying problem.



    加载中


    [1] L. Guo, X. L. Zhao, X. M. Gu, Y. L. Zhao, Y. B. Zheng, T. Z. Huang, Three-dimensional fractional total variation regularized tensor optimized model for image deblurring, Appl. Math. Comput., 404 (2021), 126224. https://doi.org/10.1016/j.amc.2021.126224 doi: 10.1016/j.amc.2021.126224
    [2] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
    [3] Y. Y. Huang, X. M. Gu, Y. Gong, H. Li, Y. L. Zhao, B. Carpentieri, A fast preconditioned semi-implicit difference scheme for strongly nonlinear space-fractional diffusion equations, Fractal Fract., 5 (2021), 230. https://doi.org/10.3390/fractalfract5040230 doi: 10.3390/fractalfract5040230
    [4] X. M. Gu, H. W. Sun, Y. L. Zhao, X. C. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270
    [5] W. H. Luo, C. P. Li, T. Z. Huang, X. M. Gu, G. C. Wu, A high-order accurate numerical scheme for the caputo derivative with applications to fractional diffusion problems, Numer. Func. Anal. Opt., 39 (2018), 600–622. https://doi.org/10.1080/01630563.2017.1402346 doi: 10.1080/01630563.2017.1402346
    [6] V. P. Dubey, J. Singh, S. Dubey, D. Kumar, Analysis of Cauchy problems and diffusion equations associated with the Hilfer-Prabhakar fractional derivative via Kharrat-Toma transform, Fractal Fract., 7 (2023), 413. https://doi.org/10.3390/fractalfract7050413 doi: 10.3390/fractalfract7050413
    [7] J. Singh, R. Agrawal, K. S. Nisar, A new forecasting behavior of fractional model of atmospheric dynamics of carbon dioxide gas, Part. Differ. Equ. Appl. Math., 9 (2024), 100595. https://doi.org/10.1016/j.padiff.2023.100595 doi: 10.1016/j.padiff.2023.100595
    [8] J. Singh, A. M. Alshehri, Sushila, D. Kumar, Computational analysis of fractional liénard's equation with exponential memory, J. Comput. Nonlin. Dyn., 18 (2023), 041004. https://doi.org/10.1115/1.4056858 doi: 10.1115/1.4056858
    [9] O. Martin, On the homotopy analysis method for solving a particle transport equation, Appl. Math. Model., 37 (2013), 3959–3967. https://doi.org/10.1016/j.apm.2012.08.023 doi: 10.1016/j.apm.2012.08.023
    [10] Z. Jackiewicz, M. Rahman, B. D. Welfert, Numerical solution of a Fredholm integro-differential equation modelling $\theta$-neural networks, Appl. Math. Comput., 195 (2008), 523–536. https://doi.org/10.1016/j.icarus.2007.12.026 doi: 10.1016/j.icarus.2007.12.026
    [11] Ş. Yüzbaşı, M. Sezer, B. Kemancı, Numerical solutions of integro-differential equations and application of a population model with an improved legendre method, Appl. Math. Model., 37 (2013), 2086–2101. https://doi.org/10.1016/j.apm.2012.05.012 doi: 10.1016/j.apm.2012.05.012
    [12] N. Hale, An ultraspherical spectral method for linear Fredholm and Volterra integro-differential equations of convolution type, IMA J. Numer. Anal., 39 (2019), 1727–1746. https://doi.org/10.1093/imanum/dry042 doi: 10.1093/imanum/dry042
    [13] N. Koshev, L. Beilina, An adaptive finite element method for Fredholm integral equations of the first kind and its verification on experimental data, Open Math., 11 (2013), 1489–1509. https://doi.org/10.2478/s11533-013-0247-3 doi: 10.2478/s11533-013-0247-3
    [14] J. Medlock, M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201–222. https://doi.org/10.1016/S0025-5564(03)00041-5 doi: 10.1016/S0025-5564(03)00041-5
    [15] M. R. Eslahchi, M. Dehghan, M. Parvizi, Application of the collocation method for solving nonlinear fractional integro-differential equations, J. Comput. Appl. Math., 257 (2014), 105–128. https://doi.org/10.1016/j.cam.2013.07.044 doi: 10.1016/j.cam.2013.07.044
    [16] H. Li, Y. Jiang, Z. Wang, L. Zhang, Z. Teng, Global Mittag-Leffler stability of coupled system of fractional-order differential equations on network, Appl. Math. Comput., 270 (2015), 269–277. https://doi.org/10.1016/j.amc.2015.08.043 doi: 10.1016/j.amc.2015.08.043
    [17] M. Gülsu, Y. Öztürk, A. Anapalı, Numerical approach for solving fractional Fredholm integro-differential equation, Int. J. Comput. Math., 90 (2013), 1413–1434. https://doi.org/10.1080/00207160.2012.750720 doi: 10.1080/00207160.2012.750720
    [18] A. Darweesh, M. Alquran, K. Aghzawi, New numerical treatment for a family of two-dimensional fractional Fredholm integro-differential equations, Algorithms, 13 (2020), 37. https://doi.org/10.3390/a13020037 doi: 10.3390/a13020037
    [19] W. Jiang, T. Tian, Numerical solution of nonlinear Volterra integro-differential equations of fractional order by the reproducing kernel method, Appl. Math. Model., 39 (2015), 4871–4876. https://doi.org/10.1016/j.apm.2015.03.053 doi: 10.1016/j.apm.2015.03.053
    [20] L. Zhu, Q. Fan, Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet, Commun. Nonlinear Sci., 17 (2012), 2333–2341. https://doi.org/10.1016/j.cnsns.2011.10.014 doi: 10.1016/j.cnsns.2011.10.014
    [21] I. Aziz, M. Fayyaz, A new approach for numerical solution of integro-differential equations via Haar wavelets, Int. J. Comput. Math., 90 (2013), 1971–1989. https://doi.org/10.1080/00207160.2013.770481 doi: 10.1080/00207160.2013.770481
    [22] B. K. Mousavi, M. H. Heydari, Wilson wavelets method for solving nonlinear fractional Fredholm-Hammerstein integro-differential equations, Int. J. Comput. Math., 97 (2020), 2165–2177. https://doi.org/10.1080/00207160.2019.1683731 doi: 10.1080/00207160.2019.1683731
    [23] L. Huang, X. F. Li, Y. L. Zhao, X. Y. Duan, Approximate solution of fractional integro-differential equations by Taylor expansion method, Comput. Math. Appl., 62 (2011), 1127–1134. https://doi.org/10.1016/j.camwa.2011.03.037 doi: 10.1016/j.camwa.2011.03.037
    [24] X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
    [25] X. Ma, C. Huang, Spectral collocation method for linear fractional integro-differential equations, Appl. Math. Model., 38 (2014), 1434–1448. https://doi.org/10.1016/j.apm.2013.08.013 doi: 10.1016/j.apm.2013.08.013
    [26] F. Yousefi, A. Rivaz, W. Chen, The construction of operational matrix of fractional integration for solving fractional differential and integro-differential equations, Neural Comput. Appl., 31 (2019), 1867–1878. https://doi.org/10.1007/s00521-017-3163-9 doi: 10.1007/s00521-017-3163-9
    [27] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, D. Baleanu, Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations, Nonlinear Anal.-Model., 24 (2019), 332–352. https://doi.org/10.15388/NA.2019.3.2 doi: 10.15388/NA.2019.3.2
    [28] K. Maleknejad, Y. Mahmoudi, Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations, Appl. Math. Comput., 145 (2003), 641–653. https://doi.org/10.1016/S0096-3003(03)00152-8 doi: 10.1016/S0096-3003(03)00152-8
    [29] A. Pedas, M. Vikerpuur, Spline collocation for multi-term fractional integro-differential equations with weakly singular kernels, Fractal Fract., 5 (2021), 90. https://doi.org/10.3390/fractalfract5030090 doi: 10.3390/fractalfract5030090
    [30] R. Koundal, R. Kumar, R. Kumar, K. Srivastava, D. Baleanu, A novel collocated-shifted Lucas polynomial approach for fractional integro-differential equations, Int. J. Appl. Comput. Math., 7 (2021), 1–19. https://doi.org/10.1007/s40819-021-01108-0 doi: 10.1007/s40819-021-01108-0
    [31] L. Wu, Z. Chen, X. Ding, A minimal search method for solving fractional integro-differential equations based on modified Legendre multiwavelets, J. Appl. Math. Comput., 68 (2022), 1467–1483. https://doi.org/10.1007/s12190-021-01573-2 doi: 10.1007/s12190-021-01573-2
    [32] R. Amin, K. Shah, M. Asif, I. Khan, F. Ullah, An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet, J. Comput. Appl. Math., 381 (2021), 113028. https://doi.org/10.1016/j.cam.2020.113028 doi: 10.1016/j.cam.2020.113028
    [33] H. Jafari, N. A. Tuan, R. M. Ganji, A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations, J. King Saud Univ. Sci., 33 (2021), 101185. https://doi.org/10.1016/j.jksus.2020.08.029 doi: 10.1016/j.jksus.2020.08.029
    [34] N. Ford, M. Morgado, M. Rebelo, Nonpolynomial collocation approximation of solutions to fractional differential equations, Fract. Calc. Appl. Anal., 16 (2013), 874–891. https://doi.org/10.2478/s13540-013-0054-3 doi: 10.2478/s13540-013-0054-3
    [35] K. Du, On well-conditioned spectral collocation and spectral methods by the integral reformulation, SIAM J. Sci. Comput., 38 (2016), A3247–A3263. https://doi.org/10.1137/15M1046629 doi: 10.1137/15M1046629
    [36] G. L. Delzanno, Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form, J. Comput. Phys., 301 (2015), 338–356. https://doi.org/10.1016/j.jcp.2015.07.028 doi: 10.1016/j.jcp.2015.07.028
    [37] Y. Chen, J. Zhou, Error estimates of spectral Legendre-Galerkin methods for the fourth-order equation in one dimension, Appl. Math. Comput., 268 (2015), 1217–1226. https://doi.org/10.1016/j.amc.2015.06.082 doi: 10.1016/j.amc.2015.06.082
    [38] M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations, Comput. Appl. Math., 41 (2022), 1–21. https://doi.org/10.1007/s40314-021-01702-4 doi: 10.1007/s40314-021-01702-4
    [39] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, D. Baleanu, Spectral technique for solving variable-order fractional Volterra integro-differential equations, Numer. Meth. Part. D. E., 34 (2018), 1659–1677. https://doi.org/10.1002/num.22233 doi: 10.1002/num.22233
    [40] A. Z. Amin, M. A. Abdelkawy, E. Solouma, I. Al-Dayel, A spectral collocation method for solving the non-linear distributed-order fractional Bagley-Torvik differential equation, Fractal Fract., 7 (2023), 780. https://doi.org/10.3390/fractalfract7110780 doi: 10.3390/fractalfract7110780
    [41] A. Z. Amin, A. M. Lopes, I. Hashim, A space-time spectral collocation method for solving the variable-order fractional Fokker-Planck equation, J. Appl. Anal. Comput., 13 (2023), 969–985. https://doi.org/10.11948/20220254 doi: 10.11948/20220254
    [42] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations, Commun. Nonlinear Sci., 72 (2019), 342–359. https://doi.org/10.1016/j.cnsns.2019.01.005 doi: 10.1016/j.cnsns.2019.01.005
    [43] A. Z. Amin, M. A. Abdelkawy, E. Soluma, M. M. Babatin, A space-time spectral approximation for solving two dimensional variable-order fractional convection-diffusion equations with nonsmooth solutions, Int. J. Mod. Phys. C, 2023. https://doi.org/10.1142/S0129183124500888
    [44] M. A. Abdelkawy, A. Z. M. Amin, A. H. Bhrawy, J. A. T. Machado, A. M. Lopes, Jacobi collocation approximation for solving multi-dimensional Volterra integral equations, Int. J. Nonlinear Sci., 18 (2017), 411–425. https://doi.org/10.1515/ijnsns-2016-0160 doi: 10.1515/ijnsns-2016-0160
    [45] S. S. Ezz-Eldien, On solving systems of multi-pantograph equations via spectral tau method, Appl. Math. Comput., 321 (2018), 63–73. https://doi.org/10.1016/j.amc.2017.10.014 doi: 10.1016/j.amc.2017.10.014
    [46] D. D. Hu, Y. Y. Fu, W. J. Cai, Y. S. Wang, Unconditional convergence of conservative spectral Galerkin methods for the coupled fractional nonlinear Klein-Gordon-Schrödinger equations, J. Sci. Comput, 94 (2023), 70. https://doi.org/10.1007/s10915-023-02108-6 doi: 10.1007/s10915-023-02108-6
    [47] E. H. Doha, A. H. Bhrawy, R. M. Hafez, A Jacobi-Jacobi dual-petrov-Galerkin method for third-and fifth-order differential equations, Math. Comput. Model., 53 (2011), 1820–1832. https://doi.org/10.1016/j.mcm.2011.01.002 doi: 10.1016/j.mcm.2011.01.002
    [48] X. Tang, Efficient Chebyshev collocation methods for solving optimal control problems governed by Volterra integral equations, Appl. Math. Comput., 269 (2015), 118–128. https://doi.org/10.1016/j.amc.2015.07.055 doi: 10.1016/j.amc.2015.07.055
    [49] M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, I. Hashim, M. M. Babatin, Shifted fractional-order Jacobi collocation method for solving variable-order fractional integro-differential equation with weakly singular kernel, Fractal Fract., 6 (2021), 19. https://doi.org/10.3390/fractalfract6010019 doi: 10.3390/fractalfract6010019
    [50] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, On spectral methods for solving variable-order fractional integro-differential equations, Comput. Appl. Math., 37 (2018), 3937–3950. https://doi.org/10.1007/s40314-017-0551-9 doi: 10.1007/s40314-017-0551-9
    [51] J. Shen, T. Tang, L. Wang, Spectral methods: Algorithms, analysis and applications, Springer Science & Business Media, 41 (2011).
    [52] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods: Fundamentals in single domains, Springer Science & Business Media, 2007.
    [53] Y. Talaei, S. Noeiaghdam, H. Hosseinzadeh, Numerical solution of fractional order Fredholm integro-differential equations by spectral method with fractional basis functions, B. Irkutsk State U. M., 45 (2023), 89–103. https://doi.org/10.26516/1997-7670.2023.45.89 doi: 10.26516/1997-7670.2023.45.89
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(956) PDF downloads(98) Cited by(1)

Article outline

Figures and Tables

Figures(14)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog