Theory article Special Issues

Traveling waves for a nonlocal dispersal SIRS epidemic model with age structure

  • Received: 23 October 2023 Revised: 24 January 2024 Accepted: 02 February 2024 Published: 26 February 2024
  • MSC : 35K57, 92D30

  • This paper focuses on a SIRS infectious model of nonlocal dispersal adopted with age structure. We primarily investigate the existence and nonexistence of traveling wave solutions connecting the disease-free equilibrium state and the endemic equilibrium state. To be more precise, we obtain the existence of traveling wave solutions by constructing suitable upper and lower solutions and then applying Schauder's fixed point theorem when $ R_0 > 1 $ and $ c > c^* $. In addition, we prove the nonexistence of traveling wave solutions by applying the Laplace transform for $ R_0 > 1 $ and $ 0 < c < c^* $.

    Citation: Shiwen Jing, Hairong Lian, Yiming Tang, Zhaohai Ma. Traveling waves for a nonlocal dispersal SIRS epidemic model with age structure[J]. AIMS Mathematics, 2024, 9(4): 8001-8019. doi: 10.3934/math.2024389

    Related Papers:

  • This paper focuses on a SIRS infectious model of nonlocal dispersal adopted with age structure. We primarily investigate the existence and nonexistence of traveling wave solutions connecting the disease-free equilibrium state and the endemic equilibrium state. To be more precise, we obtain the existence of traveling wave solutions by constructing suitable upper and lower solutions and then applying Schauder's fixed point theorem when $ R_0 > 1 $ and $ c > c^* $. In addition, we prove the nonexistence of traveling wave solutions by applying the Laplace transform for $ R_0 > 1 $ and $ 0 < c < c^* $.



    加载中


    [1] F. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal., 50 (2002), 807–838. https://doi.org/10.1016/S0362-546X(01)00787-8 doi: 10.1016/S0362-546X(01)00787-8
    [2] L. Dai, X. Zou, Analysis of a within-host age-structured model with mutations between two viral strains, J. Math. Anal. Appl., 426 (2015), 953–970. https://doi.org/10.1016/j.jmaa.2015.01.032 doi: 10.1016/j.jmaa.2015.01.032
    [3] A. Ducrot, P. Magal, Traveling wave solutions for an infection-age structured model with diffusion, Proc. R. Soc. Edinb. Sect. A., 139A (2009), 459–482.
    [4] A. Ducrot, P. Magal, Traveling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity, 24 (2011), 2891–2911.
    [5] A. Ducrot, P. Magal, S. Ruan, Traveling wave solutions in multigroup age-structured epidemic models, Arch. Ration. Mech. Anal., 195 (2009), 311–331.
    [6] S. Guo, Bifurcation in a reaction-diffusion model with nonlocal delay effect and nonlinear boundary condition, J. Differ. Equations, 289 (2021), 236–278. https://doi.org/10.1016/j.jde.2021.04.021 doi: 10.1016/j.jde.2021.04.021
    [7] Y. Hosono, B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Model Meth. Appl. Sci., 5 (1995), 935–966. https://doi.org/10.1142/S0218202595000504 doi: 10.1142/S0218202595000504
    [8] G. Huang, X. Liu, Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25–38. https://doi.org/10.1137/110826588 doi: 10.1137/110826588
    [9] J. Huang, H. Kang, M. Lu, S. G. Ruan, Stability analysis of an age-structured epidemic model with vaccination and standard incidence rate, Nonlinear Anal. Real World Appl., 66 (2022), 103525. https://doi.org/10.1016/j.nonrwa.2022.103525 doi: 10.1016/j.nonrwa.2022.103525
    [10] C. Jerome, D. Louis, On a non-local equation arising in population dynamics, Proc. R. Soc. Edinb. Sect. A., 137A (2007), 727–755.
    [11] H. Kang, S. Ruan, Mathematical analysis on an age-structured SIS epidemic model with nonlocal diffusion, J. Math. Biol., 83 (2021). https://doi.org/10.1007/s00285-021-01634-x doi: 10.1007/s00285-021-01634-x
    [12] H. Kang, S. Ruan, Principal spectral theory in multigroup age-structured models with nonlocal diffusion, Calc. Var. Partial Dif., 62 (2023). https://doi.org/10.1007/s00526-023-02527-1 doi: 10.1007/s00526-023-02527-1
    [13] H. Kang, S. Ruan, X. Yu, Age-structured population dynamics with nonlocal diffusion, J. Dyn. Differ. Equ., 34 (2020), 789–823. https://doi.org/10.1007/s10884-020-09860-5 doi: 10.1007/s10884-020-09860-5
    [14] W. Kermack, A. Mckendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London Ser. A, 115 (1927), 700–721.
    [15] Y. Li, W. Li, G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pure Appl. Anal., 14 (2015), 1001–1022. https://doi.org/10.3934/cpaa.2015.14.1001 doi: 10.3934/cpaa.2015.14.1001
    [16] A. Lotka, Relation between birth rates and death rates, Science, 26 (1907), 21–22. https://doi.org/10.1126/science.26.653.21.b doi: 10.1126/science.26.653.21.b
    [17] Z. Ma, R. Yuan, Traveling wave solutions of a nonlocal dispersal SIRS model with spatio-temporal delay, Int. J. Biomath., 10 (2017), 1750071. https://doi.org/10.1142/S1793524517500711 doi: 10.1142/S1793524517500711
    [18] M. Gurtin, R. MacCamy, Non-linear age-dependent population dynamics, Arch. Ration. Mech. Anal., 54 (1974), 281–300. https://doi.org/10.1007/BF00250793 doi: 10.1007/BF00250793
    [19] P. Magal, C. Mccluskey, Two-group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 1058–1095. https://doi.org/10.1137/120882056 doi: 10.1137/120882056
    [20] J. Pang, J. Chen, Z. Liu, P. Bi, S. G. Ruan, Local and global stabilities of a viral dynamics model with infection-age and immune response, J. Dyn. Differ. Equ., 31 (2018), 793–813. https://doi.org/10.1007/s10884-018-9663-1 doi: 10.1007/s10884-018-9663-1
    [21] S. Qiao, F. Yang, W. Li, Traveling waves of a nonlocal dispersal SEIR model with standard incidence, Nonlinear Anal. Real World Appl., 49 (2019), 196–216. https://doi.org/10.1016/j.nonrwa.2019.03.003 doi: 10.1016/j.nonrwa.2019.03.003
    [22] S. Ruan, Spatial temporal dynamics in nonlocal epidemiological models, In: Mathematics for life science and medicine, Springer, Berlin, 2007, 97–122.
    [23] X. San, Z. Wang, Z. Feng, Spreading speed and traveling waves for an epidemic model in a periodic patchy environment, Commun. Nonlinear Sci. Numer. Simul., 90 (2020), 105387. https://doi.org/10.1016/j.cnsns.2020.105387 doi: 10.1016/j.cnsns.2020.105387
    [24] F. Sharpe, A. Lotka, L. A problem in age-distribution, London, Edinburgh Dublin Philos. Mag. J. Sci., 21 (2009), 435–438.
    [25] Y. Sun, W. Li, Z. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differ. Equations, 251 (2011), 551–581. https://doi.org/10.1016/j.jde.2011.04.020 doi: 10.1016/j.jde.2011.04.020
    [26] X. Tian, S. Guo, Traveling wave solutions for nonlocal dispersal Fisher-KPP model with age structure, Appl. Math. Lett., 123 (2022), 107593. https://doi.org/10.1016/j.aml.2021.107593 doi: 10.1016/j.aml.2021.107593
    [27] D. Widder, The Laplace transform, Princeton University Press, Princeton, NJ, 1941.
    [28] C. Wu, Existence of traveling waves with the critical speed for a discrete diffusive epidemic model, J. Differ. Equations, 262 (2017), 272–282. https://doi.org/10.1016/j.jde.2016.09.022 doi: 10.1016/j.jde.2016.09.022
    [29] S. Wu, L. Chen, C. Hsu, Traveling wave solutions for a diffusive age-structured SIR epidemic model, Commun. Nonlinear Sci. Numer. Simul., 98 (2021), 105769. https://doi.org/10.1016/j.cnsns.2021.105769 doi: 10.1016/j.cnsns.2021.105769
    [30] D. Xiao, S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419–429. https://doi.org/10.1016/j.mbs.2006.09.025 doi: 10.1016/j.mbs.2006.09.025
    [31] F. Yang, W. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131–1146. https://doi.org/10.1016/j.jmaa.2017.10.016 doi: 10.1016/j.jmaa.2017.10.016
    [32] F. Yang, W. Li, Z. Wang, Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. Real World Appl., 23 (2015), 129–147. https://doi.org/10.1016/j.nonrwa.2014.12.001 doi: 10.1016/j.nonrwa.2014.12.001
    [33] F. Yang, Y. Li, W. Li, Z. C. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969–1993. https://doi.org/10.3934/dcdsb.2013.18.1969 doi: 10.3934/dcdsb.2013.18.1969
    [34] L. Zhao, Z. Wang, S. Ruan, Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, J. Math. Biol., 77 (2018), 1871–1915. https://doi.org/10.1007/s00285-018-1227-9 doi: 10.1007/s00285-018-1227-9
    [35] J. Zhou, J. Xu, J. Wei, H. M. Xu, Existence and non-existence of traveling wave solutions for a nonlocal dispersal SIR epidemic model with nonlinear incidence rate, Nonlinear Anal. Real World Appl., 41 (2018), 204–231. https://doi.org/10.1016/j.nonrwa.2017.10.016 doi: 10.1016/j.nonrwa.2017.10.016
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(794) PDF downloads(90) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog