This article studied the new traveling wave solutions of the cascaded model with higher-order dispersion effects combined with the effects of spatiotemporal dispersion and multiplicative white noise. In the process of exploring traveling wave solutions, a clever combination of the polynomial complete discriminant system was used to discover more forms of traveling wave solutions for this equation. In order to better observe and analyze the propagation characteristics of traveling wave solutions, we used Maple and Matlab software to provide two-dimensional and three-dimensional visualization displays of the equation solutions. Meanwhile, we also analyzed the internal mechanism of nonlinear partial differential equations using planar dynamical systems. The research results indicated that there are differences in the results of different forms of soliton solutions affected by external random factors, which provided more beneficial references for people to better understand the cascaded model with higher-order dispersion effects combined with the effects of spatiotemporal dispersion and multiplicative white noise, and helped people to more comprehensively understand the propagation characteristics of optical solitons. The solution method in this article was also applicable to the study of other nonlinear partial differential equations.
Citation: Da Shi, Zhao Li, Dan Chen. New traveling wave solutions, phase portrait and chaotic patterns for the dispersive concatenation model with spatio-temporal dispersion having multiplicative white noise[J]. AIMS Mathematics, 2024, 9(9): 25732-25751. doi: 10.3934/math.20241257
This article studied the new traveling wave solutions of the cascaded model with higher-order dispersion effects combined with the effects of spatiotemporal dispersion and multiplicative white noise. In the process of exploring traveling wave solutions, a clever combination of the polynomial complete discriminant system was used to discover more forms of traveling wave solutions for this equation. In order to better observe and analyze the propagation characteristics of traveling wave solutions, we used Maple and Matlab software to provide two-dimensional and three-dimensional visualization displays of the equation solutions. Meanwhile, we also analyzed the internal mechanism of nonlinear partial differential equations using planar dynamical systems. The research results indicated that there are differences in the results of different forms of soliton solutions affected by external random factors, which provided more beneficial references for people to better understand the cascaded model with higher-order dispersion effects combined with the effects of spatiotemporal dispersion and multiplicative white noise, and helped people to more comprehensively understand the propagation characteristics of optical solitons. The solution method in this article was also applicable to the study of other nonlinear partial differential equations.
[1] | A. Hasegawa, F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. Ⅱ. normal dispersion, Appl. Phys. Lett., 23 (1973), 171–172. https://doi.org/10.1063/1.1654847 doi: 10.1063/1.1654847 |
[2] | L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Expermental observation of picosecond pulse narrowing and soliton in optical fibers, Phys. Rev. Lett., 45 (1980), 1095–1098. https://doi.org/10.1103/PhysRevLett.45.1095 doi: 10.1103/PhysRevLett.45.1095 |
[3] | D. Krökel, N. J. Halas, G. Giuliani, D. Grischkowsky, Dark-pulse propagation in optical fibers, Phys. Rev. Lett., 60 (1988), 29–32. https://doi.org/10.1103/PhysRevLett.60.29 doi: 10.1103/PhysRevLett.60.29 |
[4] | A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, et al., Experimental observation of the fundamental dark soliton in optical fibers, Phys. Rev. Lett., 61 (1988), 2445–2448. https://doi.org/10.1103/PhysRevLett.61.2445 doi: 10.1103/PhysRevLett.61.2445 |
[5] | M. S. Ahmed, A. A. S. Zaghrout, H. M. Ahmed, Travelling wave solutions for the doubly dispersive equation using improved modified extended tanh-function method, Alex. Eng. J., 61 (2022), 7987–7994. https://doi.org/10.1016/j.aej.2022.01.057 doi: 10.1016/j.aej.2022.01.057 |
[6] | W. B. Rabie, H. M. Ahmed, A. Darwish, H. H. Hussein, Construction of new solitons and other wave solutions for a concatenation model using modified extended tanh-function method, Alex. Eng. J., 74 (2023), 445–451. https://doi.org/10.1016/j.aej.2023.05.046 doi: 10.1016/j.aej.2023.05.046 |
[7] | D. Shi, Z. Li, New optical soliton solutions to the (n+1) dimensional time fractional order Sinh-Gordon equation, Results Phys., 51 (2023), 106669. https://doi.org/10.1016/j.rinp.2023.106669 doi: 10.1016/j.rinp.2023.106669 |
[8] | T. A. Khalil, N. Badra, H. M. Ahmed, W. B. Rabie, Optical solitons and other solutions for coupled system of nonlinear Biswas-Milovic equation with Kudryashov's law of refractive index by Jacobi elliptic function expansion method, Optik, 253 (2022), 168540. https://doi.org/10.1016/j.ijleo.2021.168540 doi: 10.1016/j.ijleo.2021.168540 |
[9] | D. C. Lu, A. R. Seadawy, M. Arshad, Solitary wave and elliptic function solutions of sinh-Gordon equation and its applications, Mod. Phys. Lett. B, 33 (2019), 1950436. https://doi.org/10.1142/S0217984919504360 doi: 10.1142/S0217984919504360 |
[10] | H. Triki, A. M. Wazwaz, Sub-ODE method and soliton solutions for the variable-coefficient mKdV equation, Appl. Math. Comput., 214 (2009), 370–373. https://doi.org/10.1016/j.amc.2009.04.003 doi: 10.1016/j.amc.2009.04.003 |
[11] | G. W. Wang, K. T. Yang, H. C. Gu, F. Guan, A. H. Kara, A (2+1)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions, Nucl. Phys. B, 953 (2020), 114956. https://doi.org/10.1016/j.nuclphysb.2020.114956 doi: 10.1016/j.nuclphysb.2020.114956 |
[12] | H. H. Sheng, G. F. Yu, Rational solutions of a (2+1)-dimensional sinh-Gordon equation, Appl. Math. Lett., 101 (2020), 106051. https://doi.org/10.1016/j.aml.2019.106051 doi: 10.1016/j.aml.2019.106051 |
[13] | N. A. Kudryashov, Painlevé analysis and exact solutions of the Korteweg-de Vries equation with a source, Appl. Math. Lett., 41 (2015), 41–45. https://doi.org/10.1016/j.aml.2014.10.015 doi: 10.1016/j.aml.2014.10.015 |
[14] | G. Q. Xu, Y. P. Liu, W. Y. Cui, Painlevé analysis, integrability property and multiwave interaction solutions for a new (4+1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation, Appl. Math. Lett., 132 (2022), 108184. https://doi.org/10.1016/j.aml.2022.108184 doi: 10.1016/j.aml.2022.108184 |
[15] | T. Y. Zhou, B. Tian, Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional nonlinear Schrödinger equation in an optical fiber, Appl. Math. Lett., 133 (2022), 108280. https://doi.org/10.1016/j.aml.2022.108280 doi: 10.1016/j.aml.2022.108280 |
[16] | D. Y. Yang, B. Tian, H. Y. Tian, C. C. Wei, W. R. Shan, Y. Jiang, Darboux transformation, localized waves and conservation laws for an M-coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber, Chaos Soliton. Fract., 156 (2022), 111719. https://doi.org/10.1016/j.chaos.2021.111719 doi: 10.1016/j.chaos.2021.111719 |
[17] | Y. Chen, Q. Wang, B. Li, The stochastic soliton-like solutions of stochastic KdV equations, Chaos Soliton. Fract., 23 (2005), 1465–1473. https://doi.org/10.1016/j.chaos.2004.06.049 doi: 10.1016/j.chaos.2004.06.049 |
[18] | S. S. Ray, S. Singh, New exact solutions for the wick-type stochastic Kudryashov-Sinelshchikov equation, Commun. Theor. Phys., 67 (2017), 197–206. https://doi.org/10.1088/0253-6102/67/2/197 doi: 10.1088/0253-6102/67/2/197 |
[19] | A. H. Arnous, A. M. Elsherbeny, A. Secer, M. Ozisik, M. Bayram, N. A. Shah, et al., Optical solitons for the dispersive concatenation model with spatio-temporal dispersion having multiplicative white noise, Results Phys., 56 (2024), 107299. https://doi.org/10.1016/j.rinp.2023.107299 doi: 10.1016/j.rinp.2023.107299 |
[20] | K. Itô, Stochastic integral, Proc. Imp. Acad., 20 (1944), 519–524. https://doi.org/10.3792/pia/1195572786 doi: 10.3792/pia/1195572786 |
[21] | F. F. Liu, X. Lü, J. P. Wang, Dynamical behavior and modulation instability of optical solitons with spatio-temporal dispersion, Phys. Lett. A, 496 (2024), 129317. https://doi.org/10.1016/j.physleta.2024.129317 doi: 10.1016/j.physleta.2024.129317 |
[22] | E. M. E. Zayed, A. H. Arnous, A. Secer, M. Ozisik, M. Bayram, N. A. Shah, et al., Highly dispersive optical solitons in fiber Bragg gratings for stochastic Lakshmanan-Porsezian-Daniel equation with spatio-temporal dispersion and multiplicative white noise, Results Phys., 55 (2023), 107177. https://doi.org/10.1016/j.rinp.2023.107177 doi: 10.1016/j.rinp.2023.107177 |
[23] | T. Y. Han, Y. Y. Jiang, J. J. Lyu, Chaotic behavior and optical soliton for the concatenated model arising in optical communication, Results Phys., 58 (2024), 107467. https://doi.org/10.1016/j.rinp.2024.107467 doi: 10.1016/j.rinp.2024.107467 |
[24] | W. W. Mohammed, C. Cesarano, D. Rizk, E. S. Aly, M. El-Morshedy, Impact of white noise on the exact solutions of the stochastic Riemann wave equation in quantum mechanics, Symmetry, 15 (2023), 2070. https://doi.org/10.3390/sym15112070 doi: 10.3390/sym15112070 |
[25] | C. S. Liu, Trial equation method and its applications to nonlinear evolution equations, Acta Phys. Sin., 54 (2005), 2505–2509. https://doi.org/10.7498/aps.54.2505 doi: 10.7498/aps.54.2505 |
[26] | Y. Kai, Y. X. Li, A study of Kudryashov equation and its chaotic behaviors, Wave. Random Complex, 2023, 1–17. https://doi.org/10.1080/17455030.2023.2172231 |
[27] | Y. Kai, L. K. Huang, Dynamic properties, Gaussian soliton and chaotic behaviors of general Degasperis-Procesi model, Nonlinear Dyn., 111 (2023), 8687–8700. https://doi.org/10.1007/s11071-023-08290-4 doi: 10.1007/s11071-023-08290-4 |
[28] | J. Wang, Z. Li, A dynamical analysis and new traveling wave solution of the fractional coupled Konopelchenko-Dubrovsky model, Fractal Fract., 8 (2024), 341. https://doi.org/10.3390/fractalfract8060341 doi: 10.3390/fractalfract8060341 |
[29] | C. Y. Liu, The chaotic behavior and traveling wave solutions of the conformable extended Korteweg-de-Vries model, Open Phys., 22 (2024), 20240069. https://doi.org/10.1515/phys-2024-0069 doi: 10.1515/phys-2024-0069 |
[30] | C. S. Liu, Travelling wave solutions to 1+1 dimensional dispersive long wave equation, Chinese Phys., 14 (2005), 1710–1715. https://doi.org/10.1088/1009-1963/14/9/005 doi: 10.1088/1009-1963/14/9/005 |