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Abstract: This article studied the new traveling wave solutions of the cascaded model with higher-
order dispersion effects combined with the effects of spatiotemporal dispersion and multiplicative white
noise. In the process of exploring traveling wave solutions, a clever combination of the polynomial
complete discriminant system was used to discover more forms of traveling wave solutions for this
equation. In order to better observe and analyze the propagation characteristics of traveling wave
solutions, we used Maple and Matlab software to provide two-dimensional and three-dimensional
visualization displays of the equation solutions. Meanwhile, we also analyzed the internal mechanism
of nonlinear partial differential equations using planar dynamical systems. The research results
indicated that there are differences in the results of different forms of soliton solutions affected by
external random factors, which provided more beneficial references for people to better understand
the cascaded model with higher-order dispersion effects combined with the effects of spatiotemporal
dispersion and multiplicative white noise, and helped people to more comprehensively understand the
propagation characteristics of optical solitons. The solution method in this article was also applicable
to the study of other nonlinear partial differential equations.
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1. Introduction

The term soliton is an important concept in modern mathematics and physics. From fluid mechanics,
plasma, condensed matter physics, elementary particle theory to astrophysics, solitons have been
found everywhere. In 1973, Akira and Frederick [1, 2] first proposed the concept of optical soliton
and theoretically proved that optical pulses in any lossless fiber can deform into solitons during
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transmission and then stably transmit. Subsequently, people successively discovered bright solitons,
dark solitons, black solitons, and gray solitons [3,4]. Due to the fact that optical soliton transmission
does not change its waveform and speed, optical soliton communication quickly developed. With the
urgent demand for long-distance and high-capacity optical communication, the transmission evolution
of soliton pulses in optical fibers is also receiving increasing attention. With the continuous deepening
of research on solitons, people have gradually established relatively complete mathematical and
physical soliton theories, especially using nonlinear partial differential equations to establish some
typical solitary wave equations: the Korteweg-de Vries (KdV) equation, Sine Gordon (SG) equation,
and nonlinear Schrodinger (NLS) equation. For the solutions of these equations, researchers applied
the modified extended tanh function method [5, 6], traveling wave transformation method [7], Jacobi
elliptic function expansion method [8], the improved direct algebraic scheme [9], the sub-equation
method [10], Lie symmetry analysis [11, 12], Painlevé analysis [13, 14], Béicklund transformation
method [15], the Darboux transformation method [16], and other methods to actively explore the
numerical and exact solutions of solitary wave equations, where they have achieved many results.
However, most studies are mainly limited to ideal conditions that ignore the influence of external
factors on transmission models. In fact, in actual communication systems, various types of noise
cannot be avoided. When studying the transmission law of optical solitons in noisy environments, it is
necessary to establish a random optical soliton transmission model. That is to say, when considering the
influence of various external disturbances on the transmission model of optical solitons, it is necessary
to use a random Schrodinger square to describe its transmission law. In references [17, 18], the author
used white noise functional analysis to study multiple Wick type stochastic models and achieved a
number of results. However, more research is needed on the exact solution methods for solitary wave
equations with random perturbations.

In our study, we contemplated the dimensionless expression of the cascaded model with higher-
order dispersion effects, combined with the effects of spatiotemporal dispersion and multiplicative
white noise in the It6 sense, which can be described as follows [19]:

ipi + aPyx + by + clpPPp — iT1(B1 Prxx + BalplPp2) + 0 (p = ibp)Wi(t) + T2(B3Prrrx + Bal Pl Do
+BsIpl* p + Bolpl*p + Brpip” + Bspiil”) — it3(BoPrrrrx + BrolP Paxx + Builpl pi + Brappapt (1.1
+ B13P PxPxx + B1aPP i Dx +ﬁ15P§Pi) =0.

Here, the complex valued function p = p(x,t) stands for the wave profile. Parameter o is used to
reflect the intensity of white noise and is a positive constant, and i is the imaginary unit that satisfies
i = —1. W(¢) is a standard Wiener process which is defined as W(t) = fot f(Tdw(T), where T <t, T
stands for a stochastic variable and W(r) = dd_VtV [20] represents multiplicative white noise. This noise
is used to identify the process where the excitation phase is interrupted.

Equation (1.1) investigates the effects of spatiotemporal dispersion and multiplicative white noise
on the propagation of optical solitons. Regarding the influence of spatiotemporal dispersion on the
propagation of optical solitons, Arnous et al. [19] used an improved Kudryashov method to study the
effects of spatiotemporal dispersion and multiplicative white noise on soliton propagation in a cascaded
model, and Liu et al. [21] selected an appropriate coeflicient function to study the dynamic behavior
of single solitons. The authors of Ref. [22] used the improved Kudryashov method to study the effect
of spatio-temporal dispersion and multiplicative white noise on the propagation of optical solitons.
The authors of Ref. [23] conducted in-depth research on the chaos phenomenon in the cascaded
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model and obtained accurate solutions for the cascaded model. Compared with these existing studies,
our study provides more forms of accurate solutions and uses planar dynamical systems to perform
chaotic analysis on nonlinear systems, enabling people to have a more comprehensive and in-depth
understanding of the impact of spatiotemporal dispersion and multiplicative noise on optical soliton
propagation in cascaded models, which is conducive to the wider application of optical solitons.

This article includes the following main parts: Section 2 introduces the wave transformation of
the solution of Eq (1.1) and proves that the equation has an exact solution with polynomial function
modules. Section 3 conducted a planar dynamic system analysis on Eq (1.1). Section 4 provides a
detailed derivation process for the exact solution of optical solitons based on the polynomial complete
discriminant system classification, obtaining more forms of traveling wave solutions. Section 5
provides visualization analysis of the solutions. Finally, we provide our research conclusion.

2. Mathematical analysis

This article considered the traveling wave solution of Eq (1.1) in the following form:

p(x, 1) = Qe ™, (2.1)
The wave variable { is defined as

{ = h(x —t), (2.2)

where & and v are nonzero constants. Q(() is a real-valued function which stands for the amplitude
components of the solutions, v represents the speed of the soliton, and the phase component

3
P(x,1) = —kx + wt + oW () — 50'2t + 6. (2.3)

Here, « stands for the frequency of the solitons, w denotes to the wave number, and 6, represents the
phase constant.
By inserting Eqs (2.1)—(2.3) into Eq (1.1) [24] and decomposing the real and imaginary parts of the
solution, we can obtain the following expressions:
h2(10ﬁ9/<37'3 - 6ﬁ3/<27'2 — 3Bkt +a—bv)Q" + h4(ﬁ372 - 5ﬁ9KT3)Q(4)
+ (K} (B3T2 — PokT3) + P11y — ak’ — (bk — 1)(0” — w))Q + (BsT2 — B11kT3)Q°
+ (K2((Bro + Br2 + P13 — Bra — Bis)kT3 — (Bs — Bs + B7 + Bs)T2) — BokTi + ) Q° (2.4)
+ 1 ((Bs + Bs)T2 — (3B1o + Bz + P13 — Pra)k13) 0 Q"
+ WPz = 2(B13 + B1a) = Prs)kTs + (Bs + f1)72) 007 = 0.

h(=5Bok*T3 + 4B5K° T, + 3B1K°T — 2ak — bo* + bw + (bk — 1)v)Q’
—,39T3h5 Q(S) - h3(2K(253T2 — 5P9kT3) +ﬂ171)Q(3) —ﬁl1hT3Q4Ql

¢ WY (25)
— Bioh’ 13070 = Bish’ 1307 = (Bi + Bu3 + B14)Tsh* QQ' O
+ h(k((—=3B10 + B2 — 313 + Pia + Pis)kT3 + 2(Ba + B7 — Bs)T2) + fo11)Q* Q' = 0,
with the following parametric restrictions:
Bo = Bio = P11 = P15 =0, (2.6)
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and
B2 + P13 +P1a = 0. 2.7)
Equation (2.5) can be simplified to
h(4B5k° T + 3B1k°T) — 2ak — bo? + bw + (bk — 1)v)Q’
— I (4kB372 + B111) Q) + h(k(=4B13kT3 + 2(Bs + B7 — Bs)T2) + Bo11)Q° Q' = 0.

Let the coefficients of the variable in the imaginary part of Eq (2.8) be zero. We can obtain the following
parameter values:

(2.8)

4Bk Ty + 3B1K°T) — 2ak — bo? + bw

L Al ’ (2.9)
K = (=2B35 + Bifs + BiB7 _,81:88)7'2, (2.10)
2B1B1373

and Eq (1.1) can be reduced to

ipi+apy + bpy + clplPp — it1(Bi Prxx + Balplpy) + o (p — ibp ) Wi(?)
+ T2(B3Pxxcx + Balpl’ pax + BspI*p + Bolpsl*p + Brpip* + Bspinp®) (2.11)
—13(B12pPsDyy + B13P PxPxx + L1aPDPPxx) = 0,

and Eq (2.4) can be reduced to

h4ﬂ3T2Q(4) + hz(ﬂﬂz + BsTo + 2,314KT3)Q2Q” + hz(—6,33K2T2 —3B1kty +a—bv)Q”
+ WA(—4(B13 + Bia)kTs + BeT2 + B1712)0Q % + B512 0

+ (=26°B1aTs — K2BaTa + KPeT2 — K172 — K PsTa — PokTi + 0)O°

+ (Bak* Ty + Bik°T) — ak® — bko? + bkw + 0 — w)Q = 0.

(2.12)

Equation (2.12) can be further reduced to

RO + 1600’ Q" (D) + 15Q" () + mQNDQ () + mOE) + 10’ +m Q) =0, (2.13)

with n; = (8361 + B1K°T) — ak? — bka? + bkw + 0% — w) [ (W*B3T2), 12 = (=2K3B1aT3 — K2BaTs + K*BeTr —
K*B7T2 — KBsTr — BokTy + ) [(WB3T2), 13 = (Bs)/(*B3), s = (—=4(B13 + B1a)kTs + BeTo + B172)/(BaT2),
N5 = (=6B3k°T, = 3B1kTy + a — bv)[(B3T2), 116 = (BaTa + BsT2 + 2B14k73)/(B372), where h*B31; # 0.

By the trial equation method [25], Eq (2.13) has a polynomial solution Q({), which satisfies the
following equation:

Q") = ap+ 10 + a30°. (2.14)
Suppose Eq (2.13) has the following polynomial solution Q({):

Q") = F(Q) = ap + @10 + @, 0* + a3 0. (2.15)

After integrating Eq (2.15), it can be concluded that:
1 2
Q) = 5a3Q“ + gcy2Q3 +a10% + 2000 + d. (2.16)
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Taking the derivative of Eq (2.16) yields:

0% = a0 +20,00" +3a;0°Q, (2.17)

and from Eq (2.17), we can obtain

10
Q(4) = 6Q§Q5 + 10&’2&3Q4 + (10&1@3 + ?ag)Q?’

+ Sayas + 15a0a3)0% + (oz% + 6apay + 6a3d)0 + apa; + 2asd. -
Substituting Eqs (2.16)—(2.18) into Eq (2.13), it can be concluded that:
(6h°a5 + asne + %%774 +13)Q° + (10 za; + aane + %azﬂ4)Q4
+ (10K a5 + %h%vﬁ +ams + asms + iy + 172)Q° (2.19)

+ (5h2a/1a2 + 152000’3 + aone + @15 + 20’0774)Q2
+ (hza% + 6h s + 6h*asd + ams +dns +1m1)0 + Raga, + 2had + aons = 0.

Equation (2.19) is a 5th degree equation about the function variable Q. To determine the coefficient
a;,i=0,---,5, supposing all coefficients of the Eq (2.19) are 0,

6h*a3 + asne + 3a3ns + 13 = 0,
10]’12(}’20’3 + asne + %a’zi]4 =0,

10h2(1’1(1’3 + 13—0]’12(1’% +ane +azns +ang +1n2 = 0,

; . (2.20)
Sh*a a, + 15h apas + Qo + N5 + 2a0n4 =0,
e + 6h*apas + 6h*asd + s + dny + 1y = 0,
h2a0a1 + 2]’120’2611 + aopns = 0.
Based on Eq (2.20), we can obtain the following results:
_ —(ne+na)x V 2ns+n4)*=96h%13 _ _ asns+1
a3 = 2412 » =0, a= "~ 10R2 a3 +ns+16” 2.21)
—0. d= hza%+am5+m )
@o =Y, - 6hZaz+ns
or
_ —(ne+na)x Y 2ne+n4)*=96h%3 -0 _ s
a3 = 2412 ’ =Y A= (2.22)
—C. d= h2(2%+(nr]5+m ’
a’O - ’ - 6h2(Y3+774 ’

where C is an arbitrary nonzero constant.
In either Eq (2.21) or Eq (2.22), the coeflicient «; is zero, so Eq (2.13) has the solution in the form
of Eq (2.14).
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3. Phase portraits and chaotic pattern analysis

In order to observe the stability state of the Eq (1.1), as well as the condition of the system
being affected by external random factors, we are going to discuss the dynamic behavior [26-29]
characteristics of the Eq (1.1).

In the absence of precise expressions for solutions, phase diagram analysis is an effective method
for analyzing the behavioral characteristics of solutions.

Equation (2.14) can be expressed as the two-dimensional system of equations in the following form:

9 _
g = 7> (3.1)
{21% =30’ + 0.

Then, the corresponding Hamilton system of Eq (3.1) is as follows
1 a a3
H =y —(=0*+—=20%. 2
(Q.y) =2y — (50 + 0 (3.2)

While aja; > 0, there is an equilibrium point (0,0) for the system (see Figure la,d), and the
point (0,0) is also the saddle point in Figure 1a. While aja; < 0, we can get three equilibrium

points of the system: (0, 0), (— /-, 0), and ( /—Z—;, 0) (see Figure 1b,c). From Figure 1b,c,d, we can

a3
conclude that Eq (3.1) has periodic solutions because they all comprise closed orbits, while in the case

of Figure 1a, Eq (3.1) may contain optical soliton solutions.
(@) a; <0,a3 <0 () a; <0,a3 >0 () a;>0,a3 <0 d) a; >0,a; >0

(]
\V

(@)

Figure 1. The phase portrait of Eq (3.1).

Next, we add a perturbation factor to Eq (3.1) to to analyze the sensitivity of this system,

a9 _
a =) 3.3
{ﬂ = ;0% + @10 + A cos(m), G-

a =
where @ represents frequency and A represents amplitude.

We fix parameters @ and a3, and adjust the values of A and @ to compare the impact of external
disturbances on the system. The phase portraits of Figure 2a,b,d,e and the sensitivity analysis of
Figure 3 shows that the system is highly sensitive to the influence of frequency, therefore, in practical
applications, we should explore appropriate frequencies to ensure stable operation of the system. The
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Poincaré sections (see Figure 2c,f) show the existence of chaotic states and quasiperiodic solutions in
.
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Figure 2. The visualization of the Eq (3.3) with a; = 0.2, a3 = —4.
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Figure 3. Sensitivity analysis of the Eq (3.3) witha; = 0.2, a3 = -4, A = 2.
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4. New traveling wave solutions for Eq (1.1)

According to the derivation in Section 2, as long as the solution to Eq (2.16) under Eq (2.21) is
obtained, the solution to Eq (2.13) can be obtained.

Assuming
2 4 2d
A==t =0 2 4.1)
(0%} (0%} a3

then Eq (2.16) can be transformed to

a dQ do

+ i@—@rif = : (4.2)

2 VO +a0* +u0+7  J VF(O)
where () is an integral constant and F(Q) = Q* + 1Q* + uQ + 1.
According the complete discriminant system for fourth order polynomials [30]

D, =4,
D2 = —/l,
Ds; = =223 + 84t — 92, 4.3)

Dy = —31% + 4% + 36Au*t — 322%7% — 24—7/14 + 6473,
E; =92 - 3241,

the roots of quartic polynomials F(x) = x* + Ax* + ux + 7 can be classified into the following types:
(1) If D, <0, D; =0, Dy =0, then F(x) has a pair of conjugate complex roots.
(1) If D, =0, D3 =0, D4 = 0, then F(x) has one quadruple root.
(i) If D, > 0, D; =0, D4, = 0, E, > 0, then F(x) has two different double real roots.
(iv) If D, > 0, D; > 0, D4 = 0, then F(x) has one double real root and two single real roots.
VM IEDy,>0,D;=0,D4 =0, E; =0, then F(x) has a triple real root and a single real root.
(vi) If D,D5 < 0, Dy = 0, then F(x) has a double real root and a pair of conjugate complex roots.
(vi)If D, > 0, D3 > 0, D4 > 0, then F(x) has four real roots.
(viii) If D,D3 > 0, D4 < 0, then F(x) has two different real roots and a pair of conjugate complex
roots.
(ix) If D,D5 <0, Dy > 0, then F(x) has two pair of conjugate complex roots.

According to the Liu’s classification for the roots of quartic polynomials (see [30]), we can derive
the following solutions of Eq (1.1):
When D, < 0, D; =0, D4y = 0, Eq (1.1) admits the following solution:

P1(x,) = [stanls \ SH(h(x =) = Go)] + e/ O-drn), (44)

When D, < 0, D3 = 0, D, = 0, F(Q) has a pair of conjugate complex roots, namely: F(Q) =
[(Q — I)* + s*]%. Here, [ and s are both real numbers, and s > 0. So, Eq (4.2) can be transformed into

0% dQ 1 Q —1
+ 73(4_ L) = fm = ~arctan =——. (4.5)
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So, we can get the solution to Eq (2.16):

Q = stan[s \/%(f - )] + 1. (4.6)

Inserting Eq (4.6) into Eq (2.1), the exact solution p;(x, ) of Eq (1.1) can be attained.
When D, =0, D; =0, Dy = 0, Eq (1.1) admits the following solution:

\/E ei(—Kx+a)t+a'W(t)—%a'2t+90) (4 7)
Vs (h(x — vi) — o) ' '

If D, =0, D3 = 0, D4 = 0, F(Q) has one quadruple root, namely: F(Q) = Q*. Then, Eq (4.2) can

be transformed into
a do _
£\Z )= f—QZ =-0"" (4.8)

So, the solution to Eq (2.16) can be described as follows

pZ(-x’ Z‘) = -

P (4.9)
Vasz(& = &) '
Substituting Eq (4.9) into Eq (2.1), the exact solution p,(x, ) of Eq (1.1) can be attained.
When D, > 0, D3 =0, Dy = 0, E, > 0, the following solutions of Eq (1.1) can be derived:
[—s a3 i(—kx+wi+o W) -3 o2 t+6))
p3(x, 1) = [T[Coth[ g(s = D(h(x —vt) = {p)] — 11 + l]e 27, (4.10)
[-s a3 i(—kx+wi+o WD) -3 o2 t+6))
pa(x, 1) = [T[tanh[ §(S —D(h(x—vt) =) — 1]+ e 2 o, 4.11)

IftD, >0,D; =0,D, =0, E, >0, F(Q) has two different double real roots, namely: F(Q) =
(Q — $)X(Q — [)*. Here, [ and s are both real numbers, and s > [. From Eq (4.2), we can obtain

@ ~ aQ 1 0-s
- 7<§—§o>—f(Q_s)(Q_l)—S_lln|Q_l|. (4.12)

When Q > s or Q < [, the solution to Eq (2.16) can be derived:

a [= ——lcoth[ /= (s = D = )] - 1] +1. 4.13
¢ NEeew 2 Lcothl [ (s =D& = ol = 1+ *.13)

When [/ < Q < s, the solution to Eq (2.16) can be derived:

[—s [—s a3
== I = ——[tanh[ \/ =(s =D = )] - 11+ L 4.14
¢ e VBt _ | * y ltan [\/;(s &=l =11+ (*.14)

Uniting Eq (4.9) and Eq (2.1), we can get the exact solutions p3(x, ) and p4(x,t) of Eq (1.1).
When D, > 0, D; > 0, D4 = 0, Eq (1.1) has implicit function solutions.
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It D, >0, D; >0, Dy = 0, F(Q) has one double real root and two single real roots, namely:
F(Q) = (0 - 5)*(Q = )(Q — m). Here, [, s, and m are real numbers, and [ > m.
When s > [ and Q > [, from Eq (4.2), we can obtain the implicit function solution of Eq (2.16):

| @=DG=m) - Vs =@ =m)
(s = (s = m) K |

When s > land Q < m, or s < m and Q < [, from Eq (4.2), we can obtain the implicit function
solution of Eq (2.16):

5 - 0 = (4.15)

s _ [V(Q - D(m—5) = U= 5(Q-m]
N2 O " 10— sl ' 10
When [ > s > m from Eq (4.2), we can obtain the implicit function solution of Eq (2.16):
s _ 1 . (Q-Ds-—m+(s-DQ—-m)
+ ?({ - ) = —(l By —— arcsin O = ) —m)| . “4.17)

By combining Eqs (4.15)—(4.17) and Eq (2.1), the implicit function solution of Eq (1.1) can be
acquired.

When D, > 0, D; =0, D4y =0, E, = 0, we are able to derive the following solution for Eq (1.1):

8(s—1)
a3(l = $)*(h(x = vt) = {p)* - 8

+ s]ei(—Kx+wt+0'W(t)—%O'ZHHO) (4.18)

p5(-x’ t) = [

When D, > 0, D; =0, Dy = 0, E; = 0, F(Q) has a triple real root and a single real root, namely:
F(Q) = (Q - 5)*(Q = I). Here, s and [ are both real numbers.
When Q > sand Q > [, or Q < s and Q < [, from Eq (4.2), we can get the solution of Eq (2.16):

8(s—1)
= > 5 + 5.
as(l = $)*( = o)* -8
Accordingly, by combining Eq (4.19) and Eq (2.1), we can derive the exact solution ps(x,t) of

Eq (1.1).
When D,D; < 0, Dy = 0, Eq (1.1) has the solution

+ _D24m2 A8 —v)—
= VG022 G v _ o o \J(5—I2 4 m2(2 — ) JiCkrrorsa W) Jo%r+0)
[t VD2 \F (havi—zo) _ Y2 -1
While D,D; < 0, D, = 0, F(Q) has a double real root and a pair of conjugate complex roots,

namely: F(Q) = (Q — 5)*[(Q — I)* + m?]. Here, s, [, and m are real numbers.
Thus, the equivalent form of Eq (4.2) is

Q

(4.19)

Pe(x, 1) = (4.20)

Q@-)NQ@=DT+m 5= P +m?

N %(é—go):f dQ 1 1n|yQ+(5— (_Qs—l)2+m2|, 421

_ s=21 _ \/ﬁ _ _ s(s=2D
where y = W,é— (s=D*+m Vo
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With further derivation, the solution to Eq (2.16) can be described as
et V(s=D+m? \/?(.Z—{o) — Y+ /(S D2 +m22-7y)
[ei V(s=D2+m? \/?({—{o) _ 7]2 -1 .

Putting Eq (4.22) into Eq (2.1), the exact solution pg(x, ) of Eq (1.1) can be derived.
When D, > 0, D3 > 0, D4 > 0, Eq (1.1) has the solutions

0= (4.22)

I(s — nysn?(FRUETIED ’"W D (h(x —vt) — &), 1) — s —n) .
P (x, t) el(—Kx+a)t+O'W(t)—§O' t+90). (423)
_ 2 \/a3(v m)(l n) _ _
(s —n)sn*(—=——(h(x —vt) — {y),r) -l +n

n(l = m)sn* (MR (h(x = vi) = L), ) = m(l = n)
pg(x, t) — el(—Kx+wt+0'W(t)—%a'2t+90). (424)
(I — m)sn?(Yeat=mdn) V“*“ ’"W D (h(x — vi) = &), 1) — L +n

While D, > 0, D3 > 0, D4 > 0, F(Q) has four real roots, namely: F(Q) = (Q—s)(Q-D)(Q-m)(Q—n).
Here, s, [, m, and n are real numbers, and s > [ > m > n.
When Q > s or Q < n, the following changes:

I(s — n) sin’ ¢ —s(l—n)
= . 4.25
¢ (s—n)sinzgo—(l—n) ( )

When m < Q < [, the following changes:

0= n(l—m)sinzgo—m(l—n)

. 4.26
(I —m)sin*p — (I —n) (4:26)

Under the given conditions, Eq (4.2) can be transformed into

do

(( gw_f\/(Q—s)(Q DO —m)(O0 - n) \/(s—m)(l—")f\/Tgo

(4.27)

_ (s—m)({-m)
where 2 = o

According to Eq (4.27) and the definition of the Jacobian elliptic sine function, the following
conclusions can be obtained:

\/0/3(S m)(l —n)
22

So the corresponding solution of Eq (2.16) is

(& = o), r) = sine. (4.28)

_l(s—n)anNfW & = &o)y ) — sl —n)
) NSCAER f — gy), ) ’

(4.29)

(s — n)sn2 (=222 —-l+n
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and
n(l = mysn*(YEED( — o), r) = m(l = n)
0= , (4.30)
(1 = mysn? (Y= ’"’“ YD~ £o), 1) =L +n

Substituting Eqs (4.29) and (4.30) into Eq (2. 1), respectively, we can get the exact solutions p;(x, f)
and pg(x, 1) of Eq (1.1).
When D,D; > 0, D, < 0, Eq (1.1) has the solution

VFasnes=D (p(x — yy)

2re

\/+a3ne(§ (h(x

cren(—REE0 —{o), 1)+

—vt) = {o), 1) + ¢4

ei(—Kx+wt+0'W(t)—%0'2t+9O)_ (43 1)

p9(x’ t) -
cen(——

It D,D; > 0, Dy < 0, F(Q) has two different real roots and a pair of conjugate complex roots,
namely: F(Q) = (Q — s)(Q — D[(Q — m)* + n*]. Here, s, [, m, and n are both real numbers, s > [, and
n> 0.

Introducing the following transformation:

C1COSp + ¢y

) (4.32)
C3COS @+ C4
where ¢; = —(s + D3 — —(s —Dcy, ¢o = %(s + ey — %(s —Des,c3 = s—m—72, ¢4 = 5—m-— ne,
E=rtomin o g VETAT
Under the given conditions, Eq (4.2) can be transformed to
a do 2re do
Ze-w-= | — s | SNEED)
V£(Q - $)(Q = DI(Q — m)* + n?] Fane(s=DJ 1 _ p2gin?,
where r? = -
According to Eq (4.33) and the definition of the Jacobian elliptic cosine function, we can get
VFazne(s — 1)
cn(T({ {o), 1) = cos . (4.34)

So the corresponding solution of Eq (2.16) can be depicted as

o~ cren(ELED (s — 1), ) + ¢ 4.35)
csen( LD py, SR

2re

and then the exact solution py(x,t) of Eq (1.1) can be derived.
When D,D; <0, D, > 0, Eq (1.1) has the solution

cisn(e(h(x — vt) — &), r) + coen(e(h(x — vt) — {y), r) ik aWn-302rt)
czsn(e(h(x —vt) — &), r) + caen(e(h(x — vt) — &), r)

pio(x, 1) = (4.36)

While D,D; < 0, Dy, > 0, F(Q) has two pairs of conjugate complex roots, namely: F(Q) =
[(O — 5)* + P][(Q — m)> + n?*]. Here, s, [, m, and n are real numbers, and [ > n > 0.
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Making the following transformation:

t +
=177 (4.37)
cytangp + ¢4
where ¢; = sc3 +lcy, ¢ = sca —les,c3==l-m—2, ¢4 =s—m, E = W,62E+ VE? - 1.
So, we can obtain the equivalent form of Eq (4.2)
dQ c+c? do

S -5 = f — o —— f :

VIQ =P + PIQ=m2 + ]y Ji3+ 2 + )Y (1= rsin’y
(4.38)

2_
where r? = 1.

According to Eq (4.38) and the definition of the Jacobian elliptic cosine function and the Jacobian
elliptic cosine function, we can derive the following results:

n \/a3(63 + )k + 3
sn( (- &), r) =sine. (4.39)
\/_(c3 + c4

n \/a/3(c3 + c4)(ezc3 +c3)
cn( (& = &), r) =cose. (4.40)
\/i(c3 + c4) °

Then we can obtain the solution of Eq (2.16) as

_ asn(e(d — o), 1) + caen(e(d ~ o), 1)
cssn(e({ = £o), 1) + caen(e( = &), 1)’

(4.41)

ny a3 (c% +ci)(e2 c% +cﬁ)

\/E(c§+ci)

where ¢ = , and the exact solution pjo(x, ) of Eq (1.1) can be derived.

5. Graphical representation and discussion

In order to better observe the propagation characteristics of the traveling wave solution of Eq (1.1),
we visualized the obtained traveling wave solutions py, ps, p7, po, p1o in 2D and 3D graphs with
Maple and Matlab software. Figures 4—8 show that traveling wave solitons have distinct shapes and
propagation characteristics, specifically, their modulus exhibit different periodic characteristics and
prominent changes. The real and imaginary part images of these solutions help people understand the
different phases or polarization states of waves, while the modulus images of the solutions can help
people understand the amplitude distribution of waves, which plays an important role in understanding
phenomena such as wave propagation, reflection, and interference. Figure 4 shows the morphological
characteristics of traveling wave solution with tangent function modulus in 2D and 3D graphs. We
compare the morphological characteristics of the real and imaginary parts of ps, p7, p9, p1o under
different intensities of random interference in Figures 5-8. For the traveling wave solution with
rational function modulus, its real and imaginary parts undergo significant irregular abrupt changes
under low intensity random interference, and its modulus does not exhibit periodic morphological
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characteristics (Figure 5). However, Figures 6 and 7 show that the real and imaginary parts of the
traveling wave solutions with Jacobian sine function modulus or Jacobian cosine function modulus
undergo significant irregular sudden changes under high intensity random interference, and their
modulus exhibit periodic morphological characteristics. From Figure 9, we can observe that the
traveling wave maintains a certain periodic fluctuation during propagation, but with the enhancement
of external random interference, the local mutation of the traveling wave becomes more pronounced.

(a) Real part of p; (b) Imaginary part of p; (c) Modulus of p;

57 M
Al
;] z: 5 6“&

o

1

%

|
b

(d) Real part of p; with x = 1 (e) Imaginary part of p; with x = 1 (f) Modulus of p; with x = 1

Figure 4. The solution p; of Eq (1.1) withn; = 1,73, = 10.5, 173 = 9.5, 74 = 1, n5 = =5.5,
Ne = —16, 50 = O, and o = 1.
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i

-10 -5 5 10
x

(b) Imaginary part of ps with o = 1 (c) Modulus of ps witho = 1,1 =1

(d) Real part of ps with o = 2 (e) Imaginary part of ps with o = 2 (f) Modulus of ps witho =1

Figure 5. The solution ps of Eq (1.1) with n; = 3.322266, 5, = —11.8125,n;3 = 10.5, 74 = 1,
ns = 1.6875,n¢ = —17 and ¢, = 0.

2
0 2 4 6 H 10
%

(b) Imaginary part of p; with o =1 (c) Modulus of p; witho =1,r=1

(d) Real part of p; with o = 2 (e) Imaginary part of p; with o = 2 (f) Modulus of p; with o =1

Figure 6. The solution p; of Eq (1.1) withn; = 1,17, = =21, 733 = 9.5, 9, = 1, n5 = 8.5,
ne = —16.and ¢, = 0.
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E

(a) Real part of pg with o =1 (b) Imaginary part of pg with o = 1 (c) Modulus of pg witho = 1,1 =1

(d) Real part of pg with o = 2 (e) Imaginary part of pg with o = 2 (f) Modulus of pg with o =1

Figure 7. The solution pg of Eq (1.1) with ; = =210, n, = =24.5, 3 = 105, n, = 1,
s = —3.5, Ne = —17 and {0 =0.

2 4 6 H 10
X

(b) Imaginary part of p;p with o =1 (c) Modulus of pjp witho =1,t=1

=y
ol

(d) Real part of pp with o =2 (e) Imaginary part of p;p with o = 2 (f) Modulus of pjp witho =1

Figure 8. The solution pyy of Eq (1.1) with ; = —140, , = —-10.5, 3 = 10.5, n4 = 1,
ns = 15, Ne = —17 and 50 =0.
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086 | 08
08 l 08

0 0.1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Time(t) Time(f)

(a) Real part of pgy (b) Imaginary part of pg

Figure 9. The influence of random factors on solution py of Eq (1.1) witho =1, 0o = 2, and
o=6.

6. Conclusions

This article enriches the research on the traveling wave solution of Eq (1.1), and combines
visualization techniques to analyze the morphological changes and propagation characteristics of
traveling wave solutions. Compared with other literature, this article provides more forms of exact
solutions, such as the Jacobian elliptic functions, which is beneficial for people to have a more
comprehensive understanding of the morphological changes of the exact solution of Eq (1.1). By
applying random interference factors of different intensities, the influence of random factors on the
solution of Eq (1.1) were explored, providing more references for further in-depth research on the
internal mechanism of Eq (1.1) and its practical application. These research results are also beneficial
for people to better understand the propagation characteristics of traveling waves and promote the
wider application of the system Eq (1.1).
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