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Abstract: This article studied the new traveling wave solutions of the cascaded model with higher-
order dispersion effects combined with the effects of spatiotemporal dispersion and multiplicative white
noise. In the process of exploring traveling wave solutions, a clever combination of the polynomial
complete discriminant system was used to discover more forms of traveling wave solutions for this
equation. In order to better observe and analyze the propagation characteristics of traveling wave
solutions, we used Maple and Matlab software to provide two-dimensional and three-dimensional
visualization displays of the equation solutions. Meanwhile, we also analyzed the internal mechanism
of nonlinear partial differential equations using planar dynamical systems. The research results
indicated that there are differences in the results of different forms of soliton solutions affected by
external random factors, which provided more beneficial references for people to better understand
the cascaded model with higher-order dispersion effects combined with the effects of spatiotemporal
dispersion and multiplicative white noise, and helped people to more comprehensively understand the
propagation characteristics of optical solitons. The solution method in this article was also applicable
to the study of other nonlinear partial differential equations.
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1. Introduction

The term soliton is an important concept in modern mathematics and physics. From fluid mechanics,
plasma, condensed matter physics, elementary particle theory to astrophysics, solitons have been
found everywhere. In 1973, Akira and Frederick [1, 2] first proposed the concept of optical soliton
and theoretically proved that optical pulses in any lossless fiber can deform into solitons during
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transmission and then stably transmit. Subsequently, people successively discovered bright solitons,
dark solitons, black solitons, and gray solitons [3, 4]. Due to the fact that optical soliton transmission
does not change its waveform and speed, optical soliton communication quickly developed. With the
urgent demand for long-distance and high-capacity optical communication, the transmission evolution
of soliton pulses in optical fibers is also receiving increasing attention. With the continuous deepening
of research on solitons, people have gradually established relatively complete mathematical and
physical soliton theories, especially using nonlinear partial differential equations to establish some
typical solitary wave equations: the Korteweg-de Vries (KdV) equation, Sine Gordon (SG) equation,
and nonlinear Schrödinger (NLS) equation. For the solutions of these equations, researchers applied
the modified extended tanh function method [5, 6], traveling wave transformation method [7], Jacobi
elliptic function expansion method [8], the improved direct algebraic scheme [9], the sub-equation
method [10], Lie symmetry analysis [11, 12], Painlevé analysis [13, 14], Bäcklund transformation
method [15], the Darboux transformation method [16], and other methods to actively explore the
numerical and exact solutions of solitary wave equations, where they have achieved many results.
However, most studies are mainly limited to ideal conditions that ignore the influence of external
factors on transmission models. In fact, in actual communication systems, various types of noise
cannot be avoided. When studying the transmission law of optical solitons in noisy environments, it is
necessary to establish a random optical soliton transmission model. That is to say, when considering the
influence of various external disturbances on the transmission model of optical solitons, it is necessary
to use a random Schrödinger square to describe its transmission law. In references [17, 18], the author
used white noise functional analysis to study multiple Wick type stochastic models and achieved a
number of results. However, more research is needed on the exact solution methods for solitary wave
equations with random perturbations.

In our study, we contemplated the dimensionless expression of the cascaded model with higher-
order dispersion effects, combined with the effects of spatiotemporal dispersion and multiplicative
white noise in the Itô sense, which can be described as follows [19]:

ipt + apxx + bpxt + c|p|2 p − iτ1(β1 pxxx + β2|p|2 px) + σ(p − ibpx)Wt(t) + τ2(β3 pxxxx + β4|p|2 pxx

+ β5|p|4 p + β6|px|
2 p + β7 p2

x p∗ + β8 p∗xx p2) − iτ3(β9 pxxxxx + β10|p|2 pxxx + β11|p|4 px + β12 ppx p∗xx

+ β13 p∗px pxx + β14 pp∗x pxx + β15 p2
x p∗x) = 0.

(1.1)

Here, the complex valued function p = p(x, t) stands for the wave profile. Parameter σ is used to
reflect the intensity of white noise and is a positive constant, and i is the imaginary unit that satisfies
i2 = −1. W(t) is a standard Wiener process which is defined as W(t) =

∫ t

0
f (T )dW(T ), where T < t, T

stands for a stochastic variable and Wt(t) = dW
dt [20] represents multiplicative white noise. This noise

is used to identify the process where the excitation phase is interrupted.
Equation (1.1) investigates the effects of spatiotemporal dispersion and multiplicative white noise

on the propagation of optical solitons. Regarding the influence of spatiotemporal dispersion on the
propagation of optical solitons, Arnous et al. [19] used an improved Kudryashov method to study the
effects of spatiotemporal dispersion and multiplicative white noise on soliton propagation in a cascaded
model, and Liu et al. [21] selected an appropriate coefficient function to study the dynamic behavior
of single solitons. The authors of Ref. [22] used the improved Kudryashov method to study the effect
of spatio-temporal dispersion and multiplicative white noise on the propagation of optical solitons.
The authors of Ref. [23] conducted in-depth research on the chaos phenomenon in the cascaded
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model and obtained accurate solutions for the cascaded model. Compared with these existing studies,
our study provides more forms of accurate solutions and uses planar dynamical systems to perform
chaotic analysis on nonlinear systems, enabling people to have a more comprehensive and in-depth
understanding of the impact of spatiotemporal dispersion and multiplicative noise on optical soliton
propagation in cascaded models, which is conducive to the wider application of optical solitons.

This article includes the following main parts: Section 2 introduces the wave transformation of
the solution of Eq (1.1) and proves that the equation has an exact solution with polynomial function
modules. Section 3 conducted a planar dynamic system analysis on Eq (1.1). Section 4 provides a
detailed derivation process for the exact solution of optical solitons based on the polynomial complete
discriminant system classification, obtaining more forms of traveling wave solutions. Section 5
provides visualization analysis of the solutions. Finally, we provide our research conclusion.

2. Mathematical analysis

This article considered the traveling wave solution of Eq (1.1) in the following form:

p(x, t) = Q(ζ)eiϕ(x,t). (2.1)

The wave variable ζ is defined as
ζ = h(x − vt), (2.2)

where h and v are nonzero constants. Q(ζ) is a real-valued function which stands for the amplitude
components of the solutions, v represents the speed of the soliton, and the phase component

ϕ(x, t) = −κx + ωt + σW(t) −
3
2
σ2t + θ0. (2.3)

Here, κ stands for the frequency of the solitons, ω denotes to the wave number, and θ0 represents the
phase constant.

By inserting Eqs (2.1)–(2.3) into Eq (1.1) [24] and decomposing the real and imaginary parts of the
solution, we can obtain the following expressions:

h2(10β9κ
3τ3 − 6β3κ

2τ2 − 3β1κτ1 + a − bv)Q′′ + h4(β3τ2 − 5β9κτ3)Q(4)

+ (κ4(β3τ2 − β9κτ3) + β1κ
3τ1 − aκ2 − (bκ − 1)(σ2 − ω))Q + (β5τ2 − β11κτ3)Q5

+ (κ2((β10 + β12 + β13 − β14 − β15)κτ3 − (β4 − β6 + β7 + β8)τ2) − β2κτ1 + c)Q3

+ h2((β4 + β8)τ2 − (3β10 + β12 + β13 − β14)κτ3)Q2Q′′

+ h2((2β12 − 2(β13 + β14) − β15)κτ3 + (β6 + β7)τ2)QQ
′2 = 0.

(2.4)

h(−5β9κ
4τ3 + 4β3κ

3τ2 + 3β1κ
2τ1 − 2aκ − bσ2 + bω + (bκ − 1)v)Q′

− β9τ3h5Q(5) − h3(2κ(2β3τ2 − 5β9κτ3) + β1τ1)Q(3) − β11hτ3Q4Q′

− β10h3τ3Q2Q(3) − β15h3τ3Q
′3 − (β12 + β13 + β14)τ3h3QQ′Q′′

+ h(κ((−3β10 + β12 − 3β13 + β14 + β15)κτ3 + 2(β4 + β7 − β8)τ2) + β2τ1)Q2Q′ = 0,

(2.5)

with the following parametric restrictions:

β9 = β10 = β11 = β15 = 0, (2.6)
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and
β12 + β13 + β14 = 0. (2.7)

Equation (2.5) can be simplified to

h(4β3κ
3τ2 + 3β1κ

2τ1 − 2aκ − bσ2 + bω + (bκ − 1)v)Q′

− h3(4κβ3τ2 + β1τ1)Q(3) + h(κ(−4β13κτ3 + 2(β4 + β7 − β8)τ2) + β2τ1)Q2Q′ = 0.
(2.8)

Let the coefficients of the variable in the imaginary part of Eq (2.8) be zero. We can obtain the following
parameter values:

v = −
4β3κ

3τ2 + 3β1κ
2τ1 − 2aκ − bσ2 + bω
bκ − 1

, (2.9)

κ =
(−2β2β3 + β1β4 + β1β7 − β1β8)τ2

2β1β13τ3
, (2.10)

and Eq (1.1) can be reduced to

ipt + apxx + bpxt + c|p|2 p − iτ1(β1 pxxx + β2|p|2 px) + σ(p − ibpx)Wt(t)
+ τ2(β3 pxxxx + β4|p|2 pxx + β5|p|4 p + β6|px|

2 p + β7 p2
x p∗ + β8 p∗xx p2)

− iτ3(β12 ppx p∗xx + β13 p∗px pxx + β14 pp∗x pxx) = 0,
(2.11)

and Eq (2.4) can be reduced to

h4β3τ2Q(4) + h2(β4τ2 + β8τ2 + 2β14κτ3)Q2Q′′ + h2(−6β3κ
2τ2 − 3β1κτ1 + a − bv)Q′′

+ h2(−4(β13 + β14)κτ3 + β6τ2 + β7τ2)QQ
′2 + β5τ2Q5

+ (−2κ3β14τ3 − κ
2β4τ2 + κ

2β6τ2 − κ
2β7τ2 − κ

2β8τ2 − β2κτ1 + c)Q3

+ (β3κ
4τ2 + β1κ

3τ1 − aκ2 − bκσ2 + bκω + σ2 − ω)Q = 0.

(2.12)

Equation (2.12) can be further reduced to

h2Q(4)(ζ) + η6Q(ζ)2Q′′(ζ) + η5Q′′(ζ) + η4Q(ζ)Q
′2(ζ) + η3Q(ζ)5 + η2Q(ζ)3 + η1Q(ζ) = 0, (2.13)

with η1 = (β3κ
4τ2 + β1κ

3τ1 − aκ2 − bκσ2 + bκω+σ2 −ω)/(h2β3τ2), η2 = (−2κ3β14τ3 − κ
2β4τ2 + κ

2β6τ2 −

κ2β7τ2 − κ
2β8τ2 − β2κτ1 + c)/(h2β3τ2), η3 = (β5)/(h2β3), η4 = (−4(β13 + β14)κτ3 + β6τ2 + β7τ2)/(β3τ2),

η5 = (−6β3κ
2τ2 − 3β1κτ1 + a − bv)/(β3τ2), η6 = (β4τ2 + β8τ2 + 2β14κτ3)/(β3τ2), where h2β3τ2 , 0.

By the trial equation method [25], Eq (2.13) has a polynomial solution Q(ζ), which satisfies the
following equation:

Q′′(ζ) = α0 + α1Q + α3Q3. (2.14)

Suppose Eq (2.13) has the following polynomial solution Q(ζ):

Q′′(ζ) = F(Q) = α0 + α1Q + α2Q2 + α3Q3. (2.15)

After integrating Eq (2.15), it can be concluded that:

(Q′)2 =
1
2
α3Q4 +

2
3
α2Q3 + α1Q2 + 2α0Q + d. (2.16)
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Taking the derivative of Eq (2.16) yields:

Q(3) = α1Q′ + 2α2QQ′ + 3α3Q2Q′, (2.17)

and from Eq (2.17), we can obtain

Q(4) = 6α2
3Q5 + 10α2α3Q4 + (10α1α3 +

10
3
α2

2)Q3

+ (5α1α2 + 15α0α3)Q2 + (α2
1 + 6α0α2 + 6α3d)Q + α0α1 + 2α2d.

(2.18)

Substituting Eqs (2.16)–(2.18) into Eq (2.13), it can be concluded that:

(6h2α2
3 + α3η6 +

1
2
α3η4 + η3)Q5 + (10h2α2α3 + α2η6 +

2
3
α2η4)Q4

+ (10h2α1α3 +
10
3

h2α2
2 + α1η6 + α3η5 + α1η4 + η2)Q3

+ (5h2α1α2 + 152α0α3 + α0η6 + α2η5 + 2α0η4)Q2

+ (h2α2
1 + 6h2α0α2 + 6h2α3d + α1η5 + dη4 + η1)Q + h2α0α1 + 2h2α2d + α0η5 = 0.

(2.19)

Equation (2.19) is a 5th degree equation about the function variable Q. To determine the coefficient
αi, i = 0, · · · , 5, supposing all coefficients of the Eq (2.19) are 0,

6h2α2
3 + α3η6 +

1
2α3η4 + η3 = 0,

10h2α2α3 + α2η6 +
2
3α2η4 = 0,

10h2α1α3 +
10
3 h2α2

2 + α1η6 + α3η5 + α1η4 + η2 = 0,
5h2α1α2 + 15h2α0α3 + α0η6 + α2η5 + 2α0η4 = 0,
h2α2

1 + 6h2α0α2 + 6h2α3d + α1η5 + dη4 + η1 = 0,
h2α0α1 + 2h2α2d + α0η5 = 0.

(2.20)

Based on Eq (2.20), we can obtain the following results: α3 =
−(2η6+η4)±

√
(2η6+η4)2−96h2η3

24h2 , α2 = 0, α1 = −
α3η5+η2

10h2α3+η4+η6
,

α0 = 0, d = h2α2
1+α1η5+η1

6h2α3+η4
,

(2.21)

or  α3 =
−(2η6+η4)±

√
(2η6+η4)2−96h2η3

24h2 , α2 = 0, α1 = −
η5
h2 ,

α0 = C, d = h2α2
1+α1η5+η1

6h2α3+η4
,

(2.22)

where C is an arbitrary nonzero constant.
In either Eq (2.21) or Eq (2.22), the coefficient α2 is zero, so Eq (2.13) has the solution in the form

of Eq (2.14).
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3. Phase portraits and chaotic pattern analysis

In order to observe the stability state of the Eq (1.1), as well as the condition of the system
being affected by external random factors, we are going to discuss the dynamic behavior [26–29]
characteristics of the Eq (1.1).

In the absence of precise expressions for solutions, phase diagram analysis is an effective method
for analyzing the behavioral characteristics of solutions.

Equation (2.14) can be expressed as the two-dimensional system of equations in the following form: dQ
dζ = y,
dy
dζ = α3Q3 + α1Q.

(3.1)

Then, the corresponding Hamilton system of Eq (3.1) is as follows

H(Q, y) =
1
2

y2 − (
α1

2
Q2 +

α3

4
Q4). (3.2)

While α1α3 > 0, there is an equilibrium point (0, 0) for the system (see Figure 1a,d), and the
point (0, 0) is also the saddle point in Figure 1a. While α1α3 < 0, we can get three equilibrium
points of the system: (0, 0), (−

√
−
α1
α3
, 0), and (

√
−
α1
α3
, 0) (see Figure 1b,c). From Figure 1b,c,d, we can

conclude that Eq (3.1) has periodic solutions because they all comprise closed orbits, while in the case
of Figure 1a, Eq (3.1) may contain optical soliton solutions.

(a) α1 < 0, α3 < 0 (b) α1 < 0, α3 > 0 (c) α1 > 0, α3 < 0 (d) α1 > 0, α3 > 0

Figure 1. The phase portrait of Eq (3.1).

Next, we add a perturbation factor to Eq (3.1) to to analyze the sensitivity of this system, dQ
dζ = y,
dy
dζ = α3Q3 + α1Q + A cos(ϖζ),

(3.3)

where ϖ represents frequency and A represents amplitude.
We fix parameters α1 and α3, and adjust the values of A and ϖ to compare the impact of external

disturbances on the system. The phase portraits of Figure 2a,b,d,e and the sensitivity analysis of
Figure 3 shows that the system is highly sensitive to the influence of frequency, therefore, in practical
applications, we should explore appropriate frequencies to ensure stable operation of the system. The
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Poincaré sections (see Figure 2c,f) show the existence of chaotic states and quasiperiodic solutions in
the system.

(a) 3D phase portrait(A = 2, ϖ = 3) (b) 2D phase portrait(A = 2, ϖ = 3) (c) Poincaré sections(A = 2, ϖ = 3)

(d) 3D phase portrait(A = 5, ϖ = 1.5) (e) 2D phase portrait(A = 5, ϖ = 1.5) (f) Poincaré sections(A = 5, ϖ = 1.5)

Figure 2. The visualization of the Eq (3.3) with α1 = 0.2, α3 = −4.

(a) Sensitivity analysis(ϖ = 1.5) (b) Sensitivity analysis(ϖ = 3)
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(c) Lyapunov exponents diagram

Figure 3. Sensitivity analysis of the Eq (3.3) with α1 = 0.2, α3 = −4, A = 2.
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4. New traveling wave solutions for Eq (1.1)

According to the derivation in Section 2, as long as the solution to Eq (2.16) under Eq (2.21) is
obtained, the solution to Eq (2.13) can be obtained.

Assuming

λ =
2α1

α3
, µ =

4α0

α3
, τ =

2d
α3
, (4.1)

then Eq (2.16) can be transformed to

±

√
α3

2
(ζ − ζ0) =

∫
dQ√

Q4 + λQ2 + µQ + τ
=

∫
dQ
√

F(Q)
, (4.2)

where ζ0 is an integral constant and F(Q) = Q4 + λQ2 + µQ + τ.
According the complete discriminant system for fourth order polynomials [30]

D1 = 4,
D2 = −λ,

D3 = −2λ3 + 8λτ − 9µ2,

D4 = −λ
3µ2 + 4λ4τ + 36λµ2τ − 32λ2τ2 − 27

4 µ
4 + 64τ3,

E2 = 9λ2 − 32λτ,

(4.3)

the roots of quartic polynomials F(x) = x4 + λx2 + µx + τ can be classified into the following types:
(i) If D2 < 0, D3 = 0, D4 = 0, then F(x) has a pair of conjugate complex roots.
(ii) If D2 = 0, D3 = 0, D4 = 0, then F(x) has one quadruple root.
(iii) If D2 > 0, D3 = 0, D4 = 0, E2 > 0, then F(x) has two different double real roots.
(iv) If D2 > 0, D3 > 0, D4 = 0, then F(x) has one double real root and two single real roots.
(v) If D2 > 0, D3 = 0, D4 = 0, E2 = 0, then F(x) has a triple real root and a single real root.
(vi) If D2D3 < 0, D4 = 0, then F(x) has a double real root and a pair of conjugate complex roots.
(vii) If D1 > 0, D3 > 0, D4 > 0, then F(x) has four real roots.
(viii) If D2D3 ≥ 0, D4 < 0, then F(x) has two different real roots and a pair of conjugate complex

roots.
(ix) If D2D3 ≤ 0, D4 > 0, then F(x) has two pair of conjugate complex roots.

According to the Liu’s classification for the roots of quartic polynomials (see [30]), we can derive
the following solutions of Eq (1.1):

When D2 < 0, D3 = 0, D4 = 0, Eq (1.1) admits the following solution:

p1(x, t) = [s tan[s
√
α3

2
(h(x − vt) − ζ0)] + l]ei(−κx+ωt+σW(t)− 3

2σ
2t+θ0). (4.4)

When D2 < 0, D3 = 0, D4 = 0, F(Q) has a pair of conjugate complex roots, namely: F(Q) =
[(Q − l)2 + s2]2. Here, l and s are both real numbers, and s > 0. So, Eq (4.2) can be transformed into

±

√
α3

2
(ζ − ζ0) =

∫
dQ

(Q − l)2 + s2 =
1
s

arctan
Q − l

s
. (4.5)
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So, we can get the solution to Eq (2.16):

Q = s tan[s
√
α3

2
(ζ − ζ0)] + l. (4.6)

Inserting Eq (4.6) into Eq (2.1), the exact solution p1(x, t) of Eq (1.1) can be attained.
When D2 = 0, D3 = 0, D4 = 0, Eq (1.1) admits the following solution:

p2(x, t) = −

√
2

√
α3(h(x − vt) − ζ0)

ei(−κx+ωt+σW(t)− 3
2σ

2t+θ0). (4.7)

If D2 = 0, D3 = 0, D4 = 0, F(Q) has one quadruple root, namely: F(Q) = Q4. Then, Eq (4.2) can
be transformed into

±

√
α3

2
(ζ − ζ0) =

∫
dQ
Q2 = −Q−1. (4.8)

So, the solution to Eq (2.16) can be described as follows

Q = −

√
2

√
α3(ζ − ζ0)

. (4.9)

Substituting Eq (4.9) into Eq (2.1), the exact solution p2(x, t) of Eq (1.1) can be attained.
When D2 > 0, D3 = 0, D4 = 0, E2 > 0, the following solutions of Eq (1.1) can be derived:

p3(x, t) = [
l − s

2
[coth[

√
α3

8
(s − l)(h(x − vt) − ζ0)] − 1] + l]ei(−κx+ωt+σW(t)− 3

2σ
2t+θ0), (4.10)

p4(x, t) = [
l − s

2
[tanh[

√
α3

8
(s − l)(h(x − vt) − ζ0)] − 1] + l]ei(−κx+ωt+σW(t)− 3

2σ
2t+θ0). (4.11)

If D2 > 0, D3 = 0, D4 = 0, E2 > 0, F(Q) has two different double real roots, namely: F(Q) =
(Q − s)2(Q − l)2. Here, l and s are both real numbers, and s > l. From Eq (4.2), we can obtain

±

√
α3

2
(ζ − ζ0) =

∫
dQ

(Q − s)(Q − l)
=

1
s − l

ln |
Q − s
Q − l

|. (4.12)

When Q > s or Q < l, the solution to Eq (2.16) can be derived:

Q = −
l − s

e
√
α3
2 (s−l)(ζ−ζ0) − 1

+ l =
l − s

2
[coth[

√
α3

8
(s − l)(ζ − ζ0)] − 1] + l. (4.13)

When l < Q < s, the solution to Eq (2.16) can be derived:

Q = −
l − s

−e
√
α3
2 (s−l)(ζ−ζ0) − 1

+ l =
l − s

2
[tanh[

√
α3

8
(s − l)(ζ − ζ0)] − 1] + l. (4.14)

Uniting Eq (4.9) and Eq (2.1), we can get the exact solutions p3(x, t) and p4(x, t) of Eq (1.1).
When D2 > 0, D3 > 0, D4 = 0, Eq (1.1) has implicit function solutions.
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If D2 > 0, D3 > 0, D4 = 0, F(Q) has one double real root and two single real roots, namely:
F(Q) = (Q − s)2(Q − l)(Q − m). Here, l, s, and m are real numbers, and l > m.

When s > l and Q > l, from Eq (4.2), we can obtain the implicit function solution of Eq (2.16):

±

√
α3

2
(ζ − ζ0) =

1
(s − l)(s − m)

ln
[
√

(Q − l)(s − m) −
√

(s − l)(Q − m)]2

|Q − s|
. (4.15)

When s > l and Q < m, or s < m and Q < l, from Eq (4.2), we can obtain the implicit function
solution of Eq (2.16):

±

√
α3

2
(ζ − ζ0) =

1
(s − l)(m − s)

ln
[
√

(Q − l)(m − s) −
√

(l − s)(Q − m)]2

|Q − s|
. (4.16)

When l > s > m from Eq (4.2), we can obtain the implicit function solution of Eq (2.16):

±

√
α3

2
(ζ − ζ0) =

1
(l − s)(s − m)

arcsin
(Q − l)(s − m) + (s − l)(Q − m)

|(Q − s)(l − m)|
. (4.17)

By combining Eqs (4.15)–(4.17) and Eq (2.1), the implicit function solution of Eq (1.1) can be
acquired.

When D2 > 0, D3 = 0, D4 = 0, E2 = 0, we are able to derive the following solution for Eq (1.1):

p5(x, t) = [
8(s − l)

α3(l − s)2(h(x − vt) − ζ0)2 − 8
+ s]ei(−κx+ωt+σW(t)− 3

2σ
2t+θ0). (4.18)

When D2 > 0, D3 = 0, D4 = 0, E2 = 0, F(Q) has a triple real root and a single real root, namely:
F(Q) = (Q − s)3(Q − l). Here, s and l are both real numbers.

When Q > s and Q > l, or Q < s and Q < l, from Eq (4.2), we can get the solution of Eq (2.16):

Q =
8(s − l)

α3(l − s)2(ζ − ζ0)2 − 8
+ s. (4.19)

Accordingly, by combining Eq (4.19) and Eq (2.1), we can derive the exact solution p5(x, t) of
Eq (1.1).

When D2D3 < 0, D4 = 0, Eq (1.1) has the solution

p6(x, t) =
e±
√

(s−l)2+m2
√
α3
2 (h(x−vt)−ζ0) − γ +

√
(s − l)2 + m2(2 − γ)

[e±
√

(s−l)2+m2
√
α3
2 (h(x−vt)−ζ0) − γ]2 − 1

ei(−κx+ωt+σW(t)− 3
2σ

2t+θ0). (4.20)

While D2D3 < 0, D4 = 0, F(Q) has a double real root and a pair of conjugate complex roots,
namely: F(Q) = (Q − s)2[(Q − l)2 + m2]. Here, s, l, and m are real numbers.

Thus, the equivalent form of Eq (4.2) is

±

√
α3

2
(ζ − ζ0) =

∫
dQ

(Q − s)
√

(Q − l)2 + m2
=

1√
(s − l)2 + m2

ln |
γQ + δ −

√
(Q − l)2 + m2

Q − s
|, (4.21)

where γ = s−2l√
(s−l)2+m2

, δ =
√

(s − l)2 + m2 −
s(s−2l)√
(s−l)2+m2

.
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With further derivation, the solution to Eq (2.16) can be described as

Q =
e±
√

(s−l)2+m2
√
α3
2 (ζ−ζ0) − γ +

√
(s − l)2 + m2(2 − γ)

[e±
√

(s−l)2+m2
√
α3
2 (ζ−ζ0) − γ]2 − 1

. (4.22)

Putting Eq (4.22) into Eq (2.1), the exact solution p6(x, t) of Eq (1.1) can be derived.
When D1 > 0, D3 > 0, D4 > 0, Eq (1.1) has the solutions

p7(x, t) =
l(s − n)sn2(

√
α3(s−m)(l−n)

2
√

2
(h(x − vt) − ζ0), r) − s(l − n)

(s − n)sn2(
√
α3(s−m)(l−n)

2
√

2
(h(x − vt) − ζ0), r) − l + n

ei(−κx+ωt+σW(t)− 3
2σ

2t+θ0). (4.23)

p8(x, t) =
n(l − m)sn2(

√
α3(s−m)(l−n)

2
√

2
(h(x − vt) − ζ0), r) − m(l − n)

(l − m)sn2(
√
α3(s−m)(l−n)

2
√

2
(h(x − vt) − ζ0), r) − l + n

ei(−κx+ωt+σW(t)− 3
2σ

2t+θ0). (4.24)

While D1 > 0, D3 > 0, D4 > 0, F(Q) has four real roots, namely: F(Q) = (Q−s)(Q−l)(Q−m)(Q−n).
Here, s, l, m, and n are real numbers, and s > l > m > n.

When Q > s or Q < n, the following changes:

Q =
l(s − n) sin2 φ − s(l − n)
(s − n) sin2 φ − (l − n)

. (4.25)

When m < Q < l, the following changes:

Q =
n(l − m) sin2 φ − m(l − n)

(l − m) sin2 φ − (l − n)
. (4.26)

Under the given conditions, Eq (4.2) can be transformed into√
α3

2
(ζ − ζ0) =

∫
dQ

√
(Q − s)(Q − l)(Q − m)(Q − n)

=
2

√
(s − m)(l − n)

∫
dQ√

1 − r2 sin2 φ

, (4.27)

where r2 =
(s−n)(l−m)
(s−m)(l−n) .

According to Eq (4.27) and the definition of the Jacobian elliptic sine function, the following
conclusions can be obtained:

sn(
√
α3(s − m)(l − n)

2
√

2
(ζ − ζ0), r) = sinφ. (4.28)

So the corresponding solution of Eq (2.16) is

Q =
l(s − n)sn2(

√
α3(s−m)(l−n)

2
√

2
(ζ − ζ0), r) − s(l − n)

(s − n)sn2(
√
α3(s−m)(l−n)

2
√

2
(ζ − ζ0), r) − l + n

, (4.29)
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and

Q =
n(l − m)sn2(

√
α3(s−m)(l−n)

2
√

2
(ζ − ζ0), r) − m(l − n)

(l − m)sn2(
√
α3(s−m)(l−n)

2
√

2
(ζ − ζ0), r) − l + n

, (4.30)

Substituting Eqs (4.29) and (4.30) into Eq (2.1), respectively, we can get the exact solutions p7(x, t)
and p8(x, t) of Eq (1.1).

When D2D3 ≥ 0, D4 < 0, Eq (1.1) has the solution

p9(x, t) =
c1cn(

√
∓α3ne(s−l)

2re (h(x − vt) − ζ0), r) + c2

c3cn(
√
∓α3ne(s−l)

2re (h(x − vt) − ζ0), r) + c4

ei(−κx+ωt+σW(t)− 3
2σ

2t+θ0). (4.31)

If D2D3 ≥ 0, D4 < 0, F(Q) has two different real roots and a pair of conjugate complex roots,
namely: F(Q) = (Q − s)(Q − l)[(Q − m)2 + n2]. Here, s, l, m, and n are both real numbers, s > l, and
n > 0.

Introducing the following transformation:

Q =
c1 cosφ + c2

c3 cosφ + c4
, (4.32)

where c1 =
1
2 (s + l)c3 −

1
2 (s − l)c4, c2 =

1
2 (s + l)c4 −

1
2 (s − l)c3, c3 = s − m − n

e , c4 = s − m − ne,
E = n2+(s−m)(l−m)

n(s−l) , e = E −
√

E2 + 1.
Under the given conditions, Eq (4.2) can be transformed to√
α3

2
(ζ − ζ0) =

∫
dQ√

±(Q − s)(Q − l)[(Q − m)2 + n2]
=

2re
√
∓2ne(s − l)

∫
dQ√

1 − r2 sin2 φ

, (4.33)

where r2 = 1
1+e2 .

According to Eq (4.33) and the definition of the Jacobian elliptic cosine function, we can get

cn(
√
∓α3ne(s − l)

2re
(ζ − ζ0), r) = cosφ. (4.34)

So the corresponding solution of Eq (2.16) can be depicted as

Q =
c1cn(

√
∓α3ne(s−l)

2re (ζ − ζ0), r) + c2

c3cn(
√
∓α3ne(s−l)

2re (ζ − ζ0), r) + c4

, (4.35)

and then the exact solution p9(x, t) of Eq (1.1) can be derived.
When D2D3 ≤ 0, D4 > 0, Eq (1.1) has the solution

p10(x, t) =
c1sn(ε(h(x − vt) − ζ0), r) + c2cn(ε(h(x − vt) − ζ0), r)
c3sn(ε(h(x − vt) − ζ0), r) + c4cn(ε(h(x − vt) − ζ0), r)

ei(−κx+ωt+σW(t)− 3
2σ

2t+θ0). (4.36)

While D2D3 ≤ 0, D4 > 0, F(Q) has two pairs of conjugate complex roots, namely: F(Q) =
[(Q − s)2 + l2][(Q − m)2 + n2]. Here, s, l, m, and n are real numbers, and l ≥ n > 0.
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Making the following transformation:

Q =
c1 tanφ + c2

c3 tanφ + c4
, (4.37)

where c1 = sc3 + lc4, c2 = sc4 − lc3, c3 = −l − m − n
e , c4 = s − m, E = (s−m)2+l2+n2

2ln , e = E +
√

E2 − 1.
So, we can obtain the equivalent form of Eq (4.2)√
α3

2
(ζ − ζ0) =

∫
dQ√

[(Q − s)2 + l2][(Q − m)2 + n2]
=

c2
3 + c2

4

n
√

(c2
3 + c2

4)(e2c2
3 + c2

4)

∫
dQ√

1 − r2 sin2 φ

,

(4.38)
where r2 = e2−1

e2 .
According to Eq (4.38) and the definition of the Jacobian elliptic cosine function and the Jacobian

elliptic cosine function, we can derive the following results:

sn(
n
√
α3(c2

3 + c2
4)(e2c2

3 + c2
4)

√
2(c2

3 + c2
4)

(ζ − ζ0), r) = sinφ. (4.39)

cn(
n
√
α3(c2

3 + c2
4)(e2c2

3 + c2
4)

√
2(c2

3 + c2
4)

(ζ − ζ0), r) = cosφ. (4.40)

Then we can obtain the solution of Eq (2.16) as

Q =
c1sn(ε(ζ − ζ0), r) + c2cn(ε(ζ − ζ0), r)
c3sn(ε(ζ − ζ0), r) + c4cn(ε(ζ − ζ0), r)

, (4.41)

where ε =
n
√
α3(c2

3+c2
4)(e2c2

3+c2
4)

√
2(c2

3+c2
4)

, and the exact solution p10(x, t) of Eq (1.1) can be derived.

5. Graphical representation and discussion

In order to better observe the propagation characteristics of the traveling wave solution of Eq (1.1),
we visualized the obtained traveling wave solutions p1, p5, p7, p9, p10 in 2D and 3D graphs with
Maple and Matlab software. Figures 4–8 show that traveling wave solitons have distinct shapes and
propagation characteristics, specifically, their modulus exhibit different periodic characteristics and
prominent changes. The real and imaginary part images of these solutions help people understand the
different phases or polarization states of waves, while the modulus images of the solutions can help
people understand the amplitude distribution of waves, which plays an important role in understanding
phenomena such as wave propagation, reflection, and interference. Figure 4 shows the morphological
characteristics of traveling wave solution with tangent function modulus in 2D and 3D graphs. We
compare the morphological characteristics of the real and imaginary parts of p5, p7, p9, p10 under
different intensities of random interference in Figures 5–8. For the traveling wave solution with
rational function modulus, its real and imaginary parts undergo significant irregular abrupt changes
under low intensity random interference, and its modulus does not exhibit periodic morphological
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characteristics (Figure 5). However, Figures 6 and 7 show that the real and imaginary parts of the
traveling wave solutions with Jacobian sine function modulus or Jacobian cosine function modulus
undergo significant irregular sudden changes under high intensity random interference, and their
modulus exhibit periodic morphological characteristics. From Figure 9, we can observe that the
traveling wave maintains a certain periodic fluctuation during propagation, but with the enhancement
of external random interference, the local mutation of the traveling wave becomes more pronounced.

(a) Real part of p1 (b) Imaginary part of p1 (c) Modulus of p1

(d) Real part of p1 with x = 1 (e) Imaginary part of p1 with x = 1 (f) Modulus of p1 with x = 1

Figure 4. The solution p1 of Eq (1.1) with η1 = 1, η2 = 10.5, η3 = 9.5, η4 = 1, η5 = −5.5,
η6 = −16, ζ0 = 0, and σ = 1.
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(a) Real part of p5 with σ = 1 (b) Imaginary part of p5 with σ = 1 (c) Modulus of p5 with σ = 1, t = 1

(d) Real part of p5 with σ = 2 (e) Imaginary part of p5 with σ = 2 (f) Modulus of p5 with σ = 1

Figure 5. The solution p5 of Eq (1.1) with η1 = 3.322266, η2 = −11.8125, η3 = 10.5, η4 = 1,
η5 = 1.6875, η6 = −17 and ζ0 = 0.

(a) Real part of p7 with σ = 1 (b) Imaginary part of p7 with σ = 1 (c) Modulus of p7 with σ = 1, t = 1

(d) Real part of p7 with σ = 2 (e) Imaginary part of p7 with σ = 2 (f) Modulus of p7 with σ = 1

Figure 6. The solution p7 of Eq (1.1) with η1 = 1, η2 = −21, η3 = 9.5, η4 = 1, η5 = 8.5,
η6 = −16 and ζ0 = 0.

AIMS Mathematics Volume 9, Issue 9, 25732–25751.



25747

(a) Real part of p9 with σ = 1 (b) Imaginary part of p9 with σ = 1 (c) Modulus of p9 with σ = 1, t = 1

(d) Real part of p9 with σ = 2 (e) Imaginary part of p9 with σ = 2 (f) Modulus of p9 with σ = 1

Figure 7. The solution p9 of Eq (1.1) with η1 = −210, η2 = −24.5, η3 = 10.5, η4 = 1,
η5 = −3.5, η6 = −17 and ζ0 = 0.

(a) Real part of p10 with σ = 1 (b) Imaginary part of p10 with σ = 1 (c) Modulus of p10 with σ = 1, t = 1

(d) Real part of p10 with σ = 2 (e) Imaginary part of p10 with σ = 2 (f) Modulus of p10 with σ = 1

Figure 8. The solution p10 of Eq (1.1) with η1 = −140, η2 = −10.5, η3 = 10.5, η4 = 1,
η5 = 1.5, η6 = −17 and ζ0 = 0.
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(a) Real part of p9 (b) Imaginary part of p9

Figure 9. The influence of random factors on solution p9 of Eq (1.1) with σ = 1, σ = 2, and
σ = 6.

6. Conclusions

This article enriches the research on the traveling wave solution of Eq (1.1), and combines
visualization techniques to analyze the morphological changes and propagation characteristics of
traveling wave solutions. Compared with other literature, this article provides more forms of exact
solutions, such as the Jacobian elliptic functions, which is beneficial for people to have a more
comprehensive understanding of the morphological changes of the exact solution of Eq (1.1). By
applying random interference factors of different intensities, the influence of random factors on the
solution of Eq (1.1) were explored, providing more references for further in-depth research on the
internal mechanism of Eq (1.1) and its practical application. These research results are also beneficial
for people to better understand the propagation characteristics of traveling waves and promote the
wider application of the system Eq (1.1).
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