This study delved into the analytical investigation of two significant nonlinear partial differential equations, namely the fractional Kawahara equation and fifth-order Korteweg-De Vries (KdV) equations, utilizing advanced analytical techniques: the Aboodh residual power series method and the Aboodh transform iterative method. Both equations were paramount in various fields of applied mathematics and physics due to their ability to describe diverse nonlinear wave phenomena. Here, we explored using the Aboodh methods to efficiently solve these equations under the framework of the Caputo operator. Through rigorous analysis and computational simulations, we demonstrated the efficacy of the proposed methods in providing accurate and insightful solutions to the time fractional Kawahara equation and fifth-order KdV equations. Our study advanced the understanding of nonlinear wave dynamics governed by fractional calculus, offering valuable insights and analytical tools for tackling complex mathematical models in diverse scientific and engineering applications.
Citation: Musawa Yahya Almusawa, Hassan Almusawa. Numerical analysis of the fractional nonlinear waves of fifth-order KdV and Kawahara equations under Caputo operator[J]. AIMS Mathematics, 2024, 9(11): 31898-31925. doi: 10.3934/math.20241533
This study delved into the analytical investigation of two significant nonlinear partial differential equations, namely the fractional Kawahara equation and fifth-order Korteweg-De Vries (KdV) equations, utilizing advanced analytical techniques: the Aboodh residual power series method and the Aboodh transform iterative method. Both equations were paramount in various fields of applied mathematics and physics due to their ability to describe diverse nonlinear wave phenomena. Here, we explored using the Aboodh methods to efficiently solve these equations under the framework of the Caputo operator. Through rigorous analysis and computational simulations, we demonstrated the efficacy of the proposed methods in providing accurate and insightful solutions to the time fractional Kawahara equation and fifth-order KdV equations. Our study advanced the understanding of nonlinear wave dynamics governed by fractional calculus, offering valuable insights and analytical tools for tackling complex mathematical models in diverse scientific and engineering applications.
[1] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[2] | S. Khirsariya, S. Rao, J. Chauhan, Solution of fractional modified Kawahara equation: a semi-analytic approach, Math. Appl. Sci. Eng., 4 (2023), 249–350. https://doi.org/10.5206/mase/16369 doi: 10.5206/mase/16369 |
[3] | S. R. Khirsariya, J. P. Chauhan, S. B. Rao, A robust computational analysis of residual power series involving general transform to solve fractional differential equations, Math. Comput. Simul., 216 (2024), 168–186. https://doi.org/10.1016/j.matcom.2023.09.007 doi: 10.1016/j.matcom.2023.09.007 |
[4] | S. R. Khirsariya, S. B. Rao, J. P. Chauhan, Semi-analytic solution of time-fractional Korteweg-de Vries equation using fractional residual power series method, Results Nonlinear Anal., 5 (2022), 222–234. |
[5] | L. K. B. Kuroda, A. V. Gomes, R. Tavoni, P. F. de Arruda Mancera, N. Varalta, R. de Figueiredo Camargo, Unexpected behavior of Caputo fractional derivative, Comp. Appl. Math., 36 (2017), 1173–1183. https://doi.org/10.1007/s40314-015-0301-9 doi: 10.1007/s40314-015-0301-9 |
[6] | R. Almeida, N. Bastos, M. Teresa, T. Monteiro, A prelude to the fractional calculus applied to tumor dynamic, Math. Methods Appl. Sci., 39 (2016), 4846–4855. |
[7] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. |
[8] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[9] | S. Alshammari, M. M. Al-Sawalha, R. Shah, Approximate analytical methods for a fractional-order nonlinear system of Jaulent–Miodek equation with energy-dependent Schrodinger potential, Fractal Fract., 7 (2023), 140. https://doi.org/10.3390/fractalfract7020140 doi: 10.3390/fractalfract7020140 |
[10] | A. Atangana, J. F. Gomez-Aguilar, A new derivative with normal distribution kernel: theory, methods and applications. Phys. A: Stat. Mech. Appl., 476 (2017), 1–14. https://doi.org/10.1016/j.physa.2017.02.016 doi: 10.1016/j.physa.2017.02.016 |
[11] | M. Alesemi, N. Iqbal, M. S. Abdo, Novel investigation of fractional-order Cauchy-reaction diffusion equation involving Caputo-Fabrizio operator, J. Funct. Spaces, 2022 (2022), 1–14. https://doi.org/10.1155/2022/4284060 doi: 10.1155/2022/4284060 |
[12] | N. Iqbal, H. Yasmin, A. Rezaiguia, J. Kafle, A. O. Almatroud, T. S. Hassan, Analysis of the fractional-order Kaup-Kupershmidt equation via novel transforms, J. Math., 2021 (2021), 1–13. https://doi.org/10.1155/2021/2567927 doi: 10.1155/2021/2567927 |
[13] | N. Iqbal, H. Yasmin, A. Ali, A. Bariq, M. M. Al-Sawalha, W. W. Mohammed, Numerical methods for fractional-order Fornberg-Whitham equations in the sense of Atangana-Baleanu derivative, J. Funct. Spaces, 2021 (2021), 1–10. https://doi.org/10.1155/2021/2197247 doi: 10.1155/2021/2197247 |
[14] | P. Sunthrayuth, A. M. Zidan, S. W. Yao, R. Shah, M. Inc, The comparative study for solving fractional-order Fornberg-Whitham equation via $\rho$-Laplace transform, Symmetry, 13 (2021), 784. https://doi.org/10.3390/sym13050784 doi: 10.3390/sym13050784 |
[15] | T. Kakutani, H. Ono, Weak non-linear hydromagnetic waves in a cold collision-free plasma, J. Phys. Soc. Jpn., 26 (1969), 1305–1318. https://doi.org/10.1143/JPSJ.26.1305 doi: 10.1143/JPSJ.26.1305 |
[16] | R. Shah, H. Khan, D. Baleanu, P. Kumam, M. Arif, A novel method for the analytical solution of fractional Zakharov-Kuznetsov equations, Adv. Differ. Equ., 2019 (2019), 1–14. https://doi.org/10.1186/s13662-019-2441-5 doi: 10.1186/s13662-019-2441-5 |
[17] | A. Goswami, J. Singh, D. Kumar, Numerical simulation of fifth order KdV equations occurring in magneto-acoustic waves, Ain Shams Eng. J., 9 (2018), 2265–2273. https://doi.org/10.1016/j.asej.2017.03.004 doi: 10.1016/j.asej.2017.03.004 |
[18] | M. O. Miansari, M. E. Miansari, A. Barari, D. D. Ganji, Application of He's variational iteration method to nonlinear Helmholtz and fifth-order KdV equations, J. Appl. Math., Stat. Inf. (JAMSI), 5 (2009). |
[19] | S. Abbasbandy, F. S. Zakaria, Soliton solutions for the fifth-order KdV equation with the homotopy analysis method. Nonlinear Dyn., 51 (2008), 83–87. https://doi.org/10.1007/s11071-006-9193-y doi: 10.1007/s11071-006-9193-y |
[20] | A. M. Wazwaz, Solitons and periodic solutions for the fifth-order KdV equation, Appl. Math. Lett., 19 (2006), 1162–1167. https://doi.org/10.1016/j.aml.2005.07.014 doi: 10.1016/j.aml.2005.07.014 |
[21] | M. T. Darvishi, F. Khani, Numerical and explicit solutions of the fifth-order Korteweg-de Vries equations, Chaos, Solitons Fract., 39 (2009), 2484–2490. https://doi.org/10.1016/j.chaos.2007.07.034 doi: 10.1016/j.chaos.2007.07.034 |
[22] | I. Ahmad, H. Seno, An epidemic dynamics model with limited isolation capacity, Theory Biosci., 142 (2023), 259–273. https://doi.org/10.1007/s12064-023-00399-9 doi: 10.1007/s12064-023-00399-9 |
[23] | H. Khan, R. Shah, P. Kumam, D. Baleanu, M. Arif, Laplace decomposition for solving nonlinear system of fractional order partial differential equations, Adv. Differ. Equ., 2020 (2020), 1–18. https://doi.org/10.1186/s13662-020-02839-y doi: 10.1186/s13662-020-02839-y |
[24] | S. Zhang, Application of Exp-function method to a KdV equation with variable coefficients, Phys. Lett. A, 365 (2007), 448–453. https://doi.org/10.1016/j.physleta.2007.02.004 doi: 10.1016/j.physleta.2007.02.004 |
[25] | O. A. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5 (2013), 31–52. |
[26] | O. Abu Arqub, Z. Abo-Hammour, R. Al-Badarneh, S. Momani, A reliable analytical method for solving higher-order initial value problems, Discrete Dyn. Nat. Soc., 2013 (2013), 673829. https://doi.org/10.1155/2013/673829 doi: 10.1155/2013/673829 |
[27] | J. Zhang, Z. Wei, L. Li, C. Zhou, Least-squares residual power series method for the time-fractional differential equations, Complexity, 2019 (2019), 1–15. https://doi.org/10.1155/2019/6159024 doi: 10.1155/2019/6159024 |
[28] | I. Jaradat, M. Alquran, R. Abdel-Muhsen, An analytical framework of 2D diffusion, wave-like, telegraph, and Burgers' models with twofold Caputo derivatives ordering, Nonlinear Dyn., 93 (2018), 1911–1922. https://doi.org/10.1007/s11071-018-4297-8 doi: 10.1007/s11071-018-4297-8 |
[29] | Y. Xie, I. Ahmad, T. I. S. Ikpe, E. F. Sofia, H. Seno, What influence could the acceptance of visitors cause on the epidemic dynamics of a reinfectious disease?: a mathematical model, Acta Biotheor., 72 (2024), 3. https://doi.org/10.1007/s10441-024-09478-w doi: 10.1007/s10441-024-09478-w |
[30] | S. Mukhtar, M. Sohaib, I. Ahmad, A numerical approach to solve volume-based batch crystallization model with fines dissolution unit, Processes, 7 (2019), 453. https://doi.org/10.3390/pr7070453 doi: 10.3390/pr7070453 |
[31] | M. F. Zhang, Y. Q. Liu, X. S. Zhou, Efficient homotopy perturbation method for fractional non-linear equations using Sumudu transform, Therm. Sci., 19 (2015), 1167–1171. |
[32] | M. I. Liaqat, S. Etemad, S. Rezapour, C. Park, A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients, AIMS Math., 7 (2022), 16917–16948. https://doi.org/10.3934/math.2022929 doi: 10.3934/math.2022929 |
[33] | M. I. Liaqat, A. Akgul, H. Abu-Zinadah, Analytical investigation of some time-fractional Black-Scholes models by the Aboodh residual power series method, Mathematics, 11 (2023), 276. https://doi.org/10.3390/math11020276 doi: 10.3390/math11020276 |
[34] | G. O. Ojo, N. I. Mahmudov, Aboodh transform iterative method for spatial diffusion of a biological population with fractional-order, Mathematics, 9 (2021), 155. https://doi.org/10.3390/math9020155 doi: 10.3390/math9020155 |
[35] | M. A. Awuya, G. O. Ojo, N. I. Mahmudov, Solution of space-time fractional differential equations using Aboodh transform iterative method, J. Math., 2022 (2022), 4861588. https://doi.org/10.1155/2022/4861588 doi: 10.1155/2022/4861588 |
[36] | M. A. Awuya, D. Subasi, Aboodh transform iterative method for solving fractional partial differential equation with Mittag-Leffler kernel, Symmetry, 13 (2021), 2055. https://doi.org/10.3390/sym13112055 doi: 10.3390/sym13112055 |
[37] | K. S. Aboodh, The new integral transform'Aboodh transform, Global J. Pure Appl. Math., 9 (2013), 35–43. |
[38] | S. Aggarwal, R. Chauhan, A comparative study of Mohand and Aboodh transforms, Int. J. Res. Adv. Technol., 7 (2019), 520–529. |
[39] | M. E. Benattia, K. Belghaba, Application of the Aboodh transform for solving fractional delay differential equations, Univ. J. Math. Appl., 3 (2020), 93–101. https://doi.org/10.32323/ujma.702033 doi: 10.32323/ujma.702033 |
[40] | B. B. Delgado, J. E. Macias-Diaz, On the general solutions of some non-homogeneous Div-curl systems with Riemann-Liouville and Caputo fractional derivatives, Fractal Fract., 5 (2021), 117. https://doi.org/10.3390/fractalfract5030117 doi: 10.3390/fractalfract5030117 |
[41] | S. Alshammari, M. Al-Smadi, I. Hashim, M. A. Alias, Residual power series technique for simulating fractional Bagley-Torvik problems emerging in applied physics, Appl. Sci., 9 (2019), 5029. https://doi.org/10.3390/app9235029 doi: 10.3390/app9235029 |