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Abstract: This study delved into the analytical investigation of two significant nonlinear partial
differential equations, namely the fractional Kawahara equation and fifth-order Korteweg-De Vries
(KdV) equations, utilizing advanced analytical techniques: the Aboodh residual power series method
and the Aboodh transform iterative method. Both equations were paramount in various fields of applied
mathematics and physics due to their ability to describe diverse nonlinear wave phenomena. Here,
we explored using the Aboodh methods to efficiently solve these equations under the framework of
the Caputo operator. Through rigorous analysis and computational simulations, we demonstrated the
efficacy of the proposed methods in providing accurate and insightful solutions to the time fractional
Kawahara equation and fifth-order KdV equations. Our study advanced the understanding of nonlinear
wave dynamics governed by fractional calculus, offering valuable insights and analytical tools for
tackling complex mathematical models in diverse scientific and engineering applications.

Keywords: fractional Kawahara equation; fifth-order KdV equations; Aboodh residual power series
method; Aboodh transform iteration method; Caputo operator
Mathematics Subject Classification: 34G20, 35A20, 35A22, 35R11

1. Introduction

Many complicated structures’ memory and natural features may be realized using fractional
calculus (FC), which studies integrals and derivatives of fractional orders [1,2]. Many recent FC
applications have included analyzing the dynamics of large-scale physical events by converting
derivatives and integrals from classical to non-integer order. Many branches of engineering and the
physical sciences use it, including electric circuits, mathematical biology, control theory, robotics,
viscoelasticity, flow models, relaxation, and signal processing [3,4]. Numerous mysterious ideas have
been refined via the study of fractional calculus, for example, logistic regression, Malthusian growth,


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241533

31899

and blood alcohol concentration, all of which have shown that fractional operators outperform integer-
order operators [5,6].

Derivatives of fractional order such as Riemann-Liouville, Atangana Baleanu, Caputo, Hilfer,
Grunwald-Letnikov, Caputo Fabrizio, and Riemann-Liouville are among the numerous that have
recently been proposed [7, 8]. Since all fractional derivatives may be reduced in Caputo’s meaning
with minor parametric adjustments, the fractional derivative of Caputo is the essential principle of
FC to investigate fractional differential equations (FDEs). Caputo’s operator, which has numerous
applications to model various physical models, possesses a power-law kernel. To address this
difficulty, the alternative fractional differential operator [9] was developed, which consists of a Mittag-
Leffler kernel and an exponentially decaying kernel. Caputo-Fabrizio (CF) and Atangana-Baleanu are
operators characterized by their non-singular kernels. These operators have been widely applied in
analyzing diverse problem classes, including but not limited to biology, economics, geophysics, and
bioengineering [10].

Korteweg and de Vries introduced the KdV equation in 1895 to formulate a model for Russell’s
soliton phenomenon, encompassing water waves of long and small amplitude. Solitons are classified
as stable solitary waves, signifying their particle-like nature [11]. Various applied disciplines,
including plasma physics, fluid dynamics, quantum mechanics, and optics, implement the KdV
equations [12]. Particle physics has employed the fifth-order KdV equations to analyze many nonlinear
phenomena [13]. Its function in the propagation of waves is crucial [14]. The authors find third-order
and fifth-order dispersive terms in the KdV form equation pertinent to the magneto-acoustic wave
problem. Furthermore, these dispersive terms manifest themselves in the vicinity of critical angle
propagation [15]. An electrically conducting fluid, plasma is also dynamic and quasi-neutral. Ions,
electrons, and neutral particles comprise it. Due to the electrical conductivity exhibited by plasma, it
includes both electric and magnetic regions. The variety of particles and regions supports diverse types
of plasma waves. A magnetic lock is a less longitudinal ion dispersion. In the low magnetic field range,
the magneto-acoustic wave exhibits characteristics of an ion acoustic wave [16, 17]. However, at low
temperatures, it transforms into an Alfven wave.

Equivalent to the general model for the investigation of magnetic characteristics of acoustic waves
with surface tension is the fifth order of KdV. According to a recent investigation [18,19], the solutions
to the equation above concerning traveling waves persist beyond infinity. The following are two widely
recognized types of fifth-order KdV equations [20,21]:

Fe.Q Fe, Q In(e.Q

D’ (e, Q) - —"6(; ) e, Q)—"(;; ) 4 (e, Q) '7(66 ) _0, 0<p<l. (1.1)
Sn(e. Q (e, Q Q

Die, @) + LLELD 2L L Gt 2L ) e, Q>—‘9'7(Of; ) o0, 0<p<t. (D)

Here, Eqgs (1.1) and (1.2) are called the Kawahara and KdV equation of fifth-order, respectively.
The extreme nonlinearity of these mathematical models makes it difficult to find suitable analytical
methods. Researchers have developed and implemented several techniques for solving nonlinear and
linear equations of KdV in the past ten years. These techniques include the variational iteration
method [21], the multi-symplectic method [22], He’s homotopy perturbation method [23], and the
Exp-function method [24].

AIMS Mathematics Volume 9, Issue 11, 31898-31925.



31900

Omar Abu Arqub established residual power series method (RPSM) in 2013 [25]. It is created by
merging the residual error function with the Taylor series. According to [26], an infinite convergence
series solves differential equations (DEs). The development of novel RPSM algorithms has been
prompted by several DEs, including KdV Burger’s equation, fuzzy DEs, Boussinesq DEs, and
numerous others [27,28]. The goal of these algorithms is to provide efficient and accurate estimates.

A novel strategy for solving FDEs was established by integrating two effective methods. Some
approaches that fall into these categories include those that use the natural transform [29], the Laplace
transform with RPSM [30], and the homotopy perturbation method [31]. In this work, we used a
novel combination method known as the Abdooh residual power series method (ARPSM) to discover
approximation and precise solutions for time-fractional nonlinear partial differential equations (PDEs).
This innovative method is significant because it combines the Aboodh transform technique with the
RPSM [32,33].

The computing effort and complexity needed are significant issues with the previously mentioned
approaches. Our suggested Aboodh transform iterative method (ATIM) [34] is this work’s unique
aspect that solves the Kawahara and KdV equations of fractional order. By integrating the Aboodh
transform with the new iterative technique, this strategy significantly reduces the computing effort and
complexity required. According to [35,36], the suggested approach yields a convergent series solution.

The ARPSM and the ATIM are the two most straightforward approaches to solving fractional DEs.
These methods fully and immediately explain the symbolic terms used in analytical solutions and offer
numerical solutions to PDEs. This paper assesses ATIM and ARPSM’s efficacy in solving the fifth-
order KdV and Kawahara equations.

The fifth-order KdV and Kawahara equations are solved using ARPSM and ATIM. These
methods provide more precise numerical answers when compared with other numerical techniques.
Additionally, a comparison analysis is performed on the numerical findings. The suggested
approaches’ findings are consistent with one another, which is a strong indicator of their efficacy and
reliability. For various values of fractional-order derivatives, there is additional graphical importance.
Therefore, the methods are accurate, easy to implement, not affected by computational error phases,
and quick. This study lays the groundwork for researchers to quickly solve various PDEs.

2. Basics of fractional calculus

Definition 2.1. [37] Assume that n(e, Q) is an exponential order continuous function. The definition
of the Aboodh transform (AT), assuming o > 0 for 77(e, Q), is as follows:

Aln(e, Q)] = ¥(¢, &) = é f ) n(e, Qe ¥dQ, r <&<n.
0

The Aboodh inverse transform (AIT) is given as:

U+i00

AT [¥(e )] =1(e, Q) = 2% f W(e, DEe™dQ,

u—ico
where € = (¢, 6, - ,¢,) € R’ and p € N.

Lemma 2.1. [38, 39] It is assumed that there exist two exponentially ordered, piecewise continuous
Junctions 1,(€,Q) and my(€,€2) on [0,00]. Let Alni(€,Q)] = Yi(€,Q), Aln2(€, Q)] = Wa(e,Q), and
X1, X2 be arbitrary constants. These characteristics are thus true:
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(1) Alx1mi(€, Q) + x2m2(€, Q)] = x1¥1(€,8) + x2¥2(€,Q),
(2) A 1 Wi(e, Q) + x2Pa(e, Q)1 = x1m1(€, &) + xama(€, Q),

(3) ALTfn(e, ] = =52,

(4) AIDLn(e, Q)] = £¥(e,6) - ity TS, r =1 <p<r, reN.

Definition 2.2. [40] In terms of order p, the function 77(e, Q) has derivative of fractional order as stated
by Caputo.
D¢n(e, Q) = Jf{_pn(’”)(e, ), m-—1<p<m,r=0,

where € = (e, 6, -+ ,€,) € R” and p,m € R, J; " is the integral of the Riemann-Liouville of (e, Q).
Definition 2.3. [41] The representation of power series is composed of the following structure.

D mOQ = Q) = 1+ 7(Q = Q)P + Q= Qo + -+,

r=0

where € = (€,6,--,¢,) € R” and p € N. This is known as the multiple fractional power series
concerning €y, where Q and 7,(€)’s are variable and series coefficients, respectively.

Lemma 2.2. Consider the exponential order function is denoted as n(e, Q). A[n(e, Q)] = Y(e, ) is the
description of the AT in this case. Hence,

r—1

AIDn(e, Q)] = £7W(e,6) = > £ 2DEn(e,0),0 < p< 1, @.1)
j=0
where € = (61,6, ,€,) € R” and p € Nand D = D},.D;,. - -+ .Dp(r — times)

Proof. By using the induction method, we have to prove Eq (2.1). In Eq (2.1), substitute r = 1.
AIDLn(e, Q)] = £M¥(e,£) — £ (e, 0) — £ Dypi(e, 0).
On the bases of Lemma 2.1, Eq (2.1) for r = 1 holds true. Put » = 2 in Eq (2.1).
ALDn(e, Q)] = EP¥(e, ) — €77 (€, 0) = £ Dgp(e, 0). (2.2)

From left-hand side (LHS) of Eq (2.2), we obtain:

LHS = A[D{n(e, Q)]. (2.3)
The expressions for Eq (2.3) are as follows:

LHS = A[Dgn(e, Q). (2.4)

Assume
2(€,Q) = Dgn(e, Q). (2.5)
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This makes Eq (2.4) as
LHS = A[D}z(e,Q)].

From the definition of the derivative of Caputo, we make changes in Eq (2.6).
LHS = A[J""7Z (e, Q)].
By applying the Riemann-Liouville integral Eq (2.7), we obtain:

AlZ (e, Q)]
g
By using the AT feature of differentiability, Eq (2.8) is modified:

z(€,0)

LHS =

LHS = &7(e,&) —

From Eq (2.5), we derive:
n(e, 0)

Z(e,8) = £"Y(e, &) — 2

where A[z(e, Q)] = Z(e, ). Hence, Eq (2.9) becomes

b

n(e,0)  Dgn(e,0)
£2-2p - £2r

Let’s suppose Eq (2.1) holds true for r = K. Substitute r = K in Eq (2.1):

LHS = &7%(e, &) -

K-1
AIDg (e, Q)] = €W (e,) = > K2 DEDIn(e,0), 0 < p < 1.
j=0

Substituting r = K + 1 in Eq (2.1):

K
A[Dg(+l)pn(6’ Q)] = é:(K+1)p\P(6’ &) — Z -fp((K+1)_j)_2Dg17(6, 0).
=0

After analyzing Eq (2.12)’s LHS, we deduce
LHS = A[DS(DED)].
Let
DY’ = g(e, Q).

By Eq (2.13), we drive
LHS = A[D]g(¢, Q)].

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

By using the integral of the Riemann-Liouville and derivative of Caputo on Eq (2.14), the subsequent

result can be obtained.
g(€,0)

LHS = &'A[D (e, Q)] - i

(2.15)
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To get Eq (2.15), use Eq (2.11).

r—1

LHS = £P¥(e,£) = ) P 2D (e, 0). (2.16)

=0
In addition, Eq (2.16) produces the subsequent outcome.
LHS = A[DZn(e, 0)].

Thus, for r = K + 1, Eq (2.1) holds. For all positive integers, Eq (2.1) holds true according to the
mathematical induction technique. O

A deeper understanding of the ARPSM and multiple fractional Taylor series (MFTS) are given as
follow.

Lemma 2.3. Consider the function n(e,Q) is an exponential order. A[n(e,Q)] = Y(e, &) is the
expression that signifies the AT of n(e, Q). AT is represented as follows in MFTS notation:

h
(G f)—z 1) ¢ 2.17)

érrp+2
where, € = (51,6, - ,¢,) €ER?, pe N.

Proof. Consider the Taylor’s series:

P 2p
M+ 1 AT O, (2.18)

The subsequent equality is produced when the AT is applied to Eq (2.18):

Q2
MO, 11] ’

1(€, ) = Tp(€) + Ny ()

Aln(e, Q)] = Alho(e)] + A | R (e)

QP
—|+A
I'p+1]

This is achieved by utilizing the AT’s features.

1 1
TR2p+ 1w

1
Aln(e, Q)] = ho(f)? + N (€) T (€)

— ¢
Llp + 1] &7+
Hence, by Eq (2.17), a new Taylor’s series is obtained: O

Lemma 2.4. Let the multiple fractional power series (MFPS) be expressed in terms of Taylor’s series
new form Eq (2.17), A[n(e, Q)] = WY(e, &).

ho(€) = lim E¥(e, &) = 11(€,0). (2.19)

Proof. Let’s suppose the Taylor’s series:

hi(e)  Ta(e)

—_ 2 _ — — —_— e e e
ho(€) = £¥(€,6) & £ : (2.20)
As denoted by Eq (2.20), the necessary solution can be obtained by employing lim,_,., in Eq (2.19)
and performing a short calculation. O
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Theorem 2.5. The following is an MFPS representation of the function A[n(e, Q)] = Y(e, &):

(o)

Ve =Y 2 ps,

rp+2°
&

where € = (€, €, -+ ,€,) € R’ and p € N. Then, we have
h(€) = DIP(e, 0),
where, D] = D{.DY. - - .Dg(r — times).

Proof. Let’s suppose the Taylor’s series:

h hi
fi(€) = £72W(€,€) — £7o(e) - % - % — 2.21)
lim;_,., 1s applied to Eq (2.21), and we get
hy(€) . h3(€)
é‘:p feoo 62[’

(€)= Jim (E"2W(e, &) — EMTo(€)) — lim

The equality that results from taking the limit is as follows:

hi(e) = flim(rf” 2P (e, &) - EMig(€)). (2.22)
Using Lemma 2.2, we obtain:
hi(e) = lim(@ALDfn(e. Q)IE)). (223)

Furthermore, the Eq (2.23) is modified using Lemma 2.3.
hi(e) = DGi(e, 0).

Using Taylor’s series and applying limit;_,., again, we obtain:

fia(e) = £ W (e, &) — E7Tg(€) — 'R () — h?pé) o
Lemma 2.3 gives us the result
() = ;gg E(EYW(e,€) = £ ho(€) — E" T (e)). (2.24)

Equation (2.24) is transformed using Lemmas 2.2 and Eq (2.4).
ha(€) = D (e, 0).
Apply the same procedure and Taylor series, and we obtain:

fi3(€) = lim £(AID (e, P)IE)).

Finally, we get:
h3(€) = D'n(e, 0).

In general,
h,(€) = Dgn(e, 0),

is proved. =
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The new Taylor series has the conditions for the convergence given in the subsequent theorem.

Theorem 2.6. The expression for MFTS is given in Lemma 2.3 and can be expressed as: A[n(e, Q)] =
Y(e, &). When If“A[Dg{“)pn(e, D <T,VO<p<1l,and0 < & < s, Rg(e, &) is the residual of the

new MFTS satisfying:

IRk (€,6)| < 0<é<s.

ER=Dp+2’

Proof. Forr =0,1,2,--- ,K + 1, and 0 < £ < s, we consider to define A[Dg’n(e, O)(€). Utilize the

Taylor series to derive the subsequent relation:

7i,(€)
é:rp+2 '

K
Ry(€,6) = ¥(e,6) = )
r=0

Apply Theorem 2.5 on Eq (2.25) to obtain:

K DPn(e, 0
Re(e.&) = ¥(e.6) = ) %

r=0

£E&+Dat2 iq to be multiplied with Eq (2.26) to obtain the following form.

K
gp(K+l)+2RK(€’ £) = é_‘2(§p(K+1)\Ij(e’ &) — Z fp(K+1—r)—2ngn(€’ 0)).
r=0

Equation (2.27) is modified with Lemma 2.2:

é:p(K+1)+2RK(E’ &) = §2A[sz(K+l)n(6, Q).
The absolute of Eq (2.28) gives us

€75 R (e, )| = 1EAIDR " (e, DI

By applying the conditions listed in Eq (2.29), the subsequent result is achieved.

< R(e,8) <

p(K+1)+2 — p(K+1)+2 "
& &

Equation (2.30) yields the desired outcome.

IRk (€,8)| < T,

Therefore, new conditions for the series to converge are developed.

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

O
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3. Methodologies

3.1. ARPSM technique

In this paper, we explain how ARPSM rules formed the basis of our solution.
Step 1: Assume the general PDE:

Dg’n(e, Q) +He)N(n) — d(e,n) = 0.
Step 2: Apply the AT on Eq (3.1):

A[D{ (e, Q) + HEN () - 6(e, )] = 0.
Utilizing Lemma 2.1 to modify Eq (3.2),

q-1 nJj
\I"(E, S) _ Z DQU(E, 0) _ ﬂ(E)Y(S) 4 F(e’ S),

— §4p+2 §4p §4p

~

where A[6(e, )] = F(€, 5), AIN(m] = Y(s).
Step 3: Equation (3.3) takes the following form:

= hi,(e
Y(e, ) = Z s’;;’ s> 0.
r=0

Step 4: Take the steps listed below:

fig(€) = lim s>¥(e, 5) = n(e, 0).

Use Theorem 2.6 to obtain this form.
hi(e) = DYn(e, 0),

ha(€) = Dn(e, 0),

hu(€) = D n(e, 0).

Step 5: The K™ truncated series ¥(e, s) can be obtained using the following expression:

K

hi.(€)
Yk(e, s) = Z ot 57 0,
r=0
fo(e) | Tu(e) n(e) <o hile)
Wk(e, s) = T tom ttat Zl s
r=w+

3.1

(3.2)

(3.3)
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Step 6: Note that the residual Aboodh function (RAF) (3.3) and the K”-truncated RAF must be
considered independently to obtain:

q=1 yJj
ARes(e, s) = P(e, 5) — Z Dgn(e, 0) N FHe)Y(s) _ F(e, s)’

§/p+2 /P /P
Jj=0
and 1
i D! o(€,0)  Fe)Y(s) Fle,s)
AResk(e, s) = Wk(e, s) - Z; St (3.4)
J=
Step 7: Equation (3.4) may be substituted with Wk (e, s) in place of its expansion form.
fo(e) @ he) N (e
AResi(e. s) = St _Zl S’P+2)
- - (3.5)
Z Dyie,0)  9(OY(s) _ Fle.s)
§ip+2 sip sip
J=
Step 8: Multifly sX7*2 on either side of the equation to get the solution to Eq (3.5).
fo(e) e () 0 (e
Kp+2 _ kp+2("0 1
5" AResk(€, 5) = 577" (T + Sp+2 ) Z §TP+2
- r=w+l (36)
Z D/(e, 0) L OY(s)  Fle s))
sipt2 sip sip /)’
=
Step 9: Take lim,_,, of Eq (3.6) to obtain:
. . fo(e) e (@) N (o)
Kp+2 _ Kp+2("0 1
}LIB,S "AResk(e, 5) = Sh_)rgs ! (7 + Sp+2 o GWp+2 Zl $TP+2
r=w+
"2 Dyie.0)  9(eY(s) _ Fle )
§ipt2 §ip sir )
J=
Step 10: 7ik(e) values can be obtained using the equation above.
lim(s*7*?AResk (e, 5)) = 0
where K=1+w,2+w,---
Step 11: Values of 7ig(€) are then substituted in Eq (3.3).
Step 12: Taking the inverse AT we obtain the final solution ng(e, Q).
3.2. ATIM Technique
Let’s consider the PDE as given below:
Dh(e. Q) = (n(e, Q). D2n(e, Q), D2n(e, Q), DXM(e. Q). 0 < p.Q < 1. 3.7)
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The initial condition is

n"(e,0)=hy, h=0,1,2,--- ,m— 1. (3.8)
The function to be determined is n(e, ), while ®(y(e, Q). D2n(e. Q), D2(e, QD (e, Q) are
operators of (e, Q), DQn(e Q), D**n(e, Q) and D**n(e, Q). The AT is applied on Eq (3.7) to obtain:

= (e, 0,

Aln(e, Q)] = o+ A[0((e. Q). DIn(e. Q). D%, Q). DI (e, Q) ). (3.9)
The AIT yields the solution to this problem:
M. 0
(e, Q) = Sp Z ”sz(;h) |0 (e, Q), DEn(e, Q). D¥n(e, @), (e, Q)])].  (3.10)

An infinite series denotes the ATIM-derived solution.
neQ) =) m (3.11)
i=0

CD(;], D%y, D, ngn) can be decomposed as:

®(n, D2y, D%, D) = ©(10, Do, Do, Dmno)

i—

) i 1 (3.12)
+ Z q)( Z M, D, D27, D3Q77h 77h, D2y, Dy, DSQ?]h))

' h=1
The subsequent equation is obtained by substituting the values of Eqs (3.11) and (3.12) for the initial
equation (3.10).

o0 m=1 _(p
Zni(6,9)= sP Z”(;(;,?) + A[®(70, D270, D10, D)1 )|
i=0
+aT (A D ( Z(nh,Dﬂnh,Dmnh,Dmnh>)])] (3.13)
i=0 h=0
i—1

—A‘l[si,,(A[(@ ;mh, D¢, D, D))

m—1 (h)

(e, Q) = Z D)
7i=0

meQ) =A" [s—lp(A[mmo, D20, D0, D20,

| (3.14)
M (6,Q) = A7 (4] D ( Z(nh, D&, DX, D) )|
i=0 =
i—1
a4l ;(nm D2, D2, D) )], m = 1,2,

AIMS Mathematics Volume 9, Issue 11, 31898-31925.
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For the m-term of Eq (3.7), the analytically approximate solution may be obtained using the following

expression:
m—1
n(e,Q) = > .
i=0

4. Application of ARPSM and ATIM

4.1. Example I using ARPSM

Consider Kawahara equation of fractional order as follows:

Fn(e, Q) »n(e, Q) (e, Q)
oo TME) e e )=

with the initial condition:

Dgn(e, Q) —

105 2
n(eo)__eh(zw/_)

and exact solution

105 31662 +e-2
n(e, Q) = —sech* .
169 2413

Equation (4.2) is used, and AT is applied to Eq (4.1) to get

]Ossech4( ) 5 3 4-1

169 23 >’n(e, s) 1 " Ay (e, 5)

77(6, S) - 2 SP[ 965 ] + EAQ[AQ T](E, S) X T]
1 B 0AG (e, 5)

+ ;AQ[AQ T](E, S) X T] =

Therefore, the series k™ -truncated terms are:

105 SeCh4

169 Jr(€9)
e, s) = Z s r= 123,40
Following is the RAF:
lossech4( ) s 34-1
B 169 3 1 10n(e, s) 1 . 0°Ag (e, 5)
AqRes(e, s) = n(e, s) — 2 — s_l’[ 56 ] + s_PA [ o N(e, s) X 5

8Ag_217](6, s)] _

1 -1
+ EAQ[AQ (e, 5) X —-

and the k”"-RAFs is:

105 4
—2gech ( )
13

_ 169 (e, ) A
AqResi(e, s) = m(e, 5) - > - ;[ el —AQ[ o€, ) X —7
1 L 0AG (e, )
+ S_I’AQ[AQ ﬂk(E, S) X T] =

=0, where O0<p<l,

03Agzl (€, 5)

(3.15)

4.1)

(4.2)

4.3)

(4.4)

(4.6)
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It takes some calculation to find f,(e, s) for r = 1,2,3, .... Using these procedures, we replace the rh-
truncated series Eq (4.4) for the r*-RAF Eq (4.6), applying lim,_..(s"7*") and solving AqRes, (€, s)) =

0, forr =1,2,3,---. Some terms that we obtain are given below:
105 . -2 . 3(e-2) . 5(e-2)
fie, s) = —m(UZQOsmh(;—B)— 10029 sinh ( ;\/ﬁ ) — 2015 sinh E\/ﬁ ) o
L (e-2) -2 :
+ 104 s1nh( 26\/B ))sech“(;\/ﬁ)),
fles) = g 01&57 =503 (50957301372 cosh (%) + 12586770193 cosh (2(3;_32))
— 12962735946 cosh (3 (e - 2)) + 2020967026 cosh (4(E _ 2)) + 68039374 cosh (5(6 _ 2)) (4.8)
13 13 Vi3 '
6(e —2) (e -2)
~ 9200529 cosh ( i/ﬁ ) + 43264 cosh ( f/ﬁ )- 54264784626)sech18(2 \/_)
and so on.
Forr=1,2,3,---, replace f,(e, s) in Eq (4.4):
105 4
_ Tessech (=%) 105 L e=2 L 3(e=2)
n(e, s) = > (5940688 \/ﬁ(17290 smh(m) — 10029 sinh ( e )
o 5(e=2) . (e-2) —2
- 2015 smh( 26\/ﬁ )+ 104 smh( ;\/ﬁ ))sech“(;ﬁ)))/(s””)
105 €-2 2(e—2)
+ (21718014715904(50957301372cosh(ﬁ) + 12586770193 cosh( e )
— 12962735946 cosh (3(6 _ 2)) + 2020967026 cosh (4(6 _ 2)) + 68039374 cosh (5 (€ - 2))
13 3 1
6(e - 2) 7(e - 2) —2
~ 9200529 cosh ( i/ﬁ ) + 43264 cosh ( i/ﬁ )- 54264784626)sech18(2€—m)) /(771 +
(4.9)
Apply AIT to obtain:
105 2 105 B L 3(e-2)
ne Q) = 1 sech* (2 \/_) Qp(—5940688 \/1_(17290 smh(2 \/_) 10029 sinh ( e )
. (d(e=2) . (T(e=2) 2
~ 2015 sinh 26\/5 )+ 104 smh(;ﬁ))sech”(;\/_))) (Tp + 1)
105 e-2 2(e
92”(21718014715904 (50957301372 cosh(ﬁ) + 12586770193 cosh( )
3(e-2) 4(e - 2)
— 12962735946 cosh ( i/ﬁ ) + 2020967026 cosh ( i/ﬁ ) + 68039374 cosh ( )
~9200529 cosh (6(6 _32))+43264 cosh (7(6 _32)) 54264784626)sech18( )) (r(zp + 1))+
(4.10)
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Table 1 presents the ARPSM solution comparison for different values of the parameter p for Q =
0.1, illustrating how the choice of p impacts the accuracy and behavior of the solutions. Figure 1 shows
a comparison between the approximate solution obtained using ARPSM (a) and the exact solution (b)
for Example 1, confirming the high accuracy of the ARPSM approach. Figure 2 visualizes the impact
of varying fractional orders on the ARPSM solution for different p values (p = 0.32,0.52,0.72),
showcasing how changes in the fractional order influence the solution structure. Figure 3 extends the
comparison in two dimensions, offering a 2D view of the fractional order solutions using ARPSM for
the same values of p, further confirming the method’s ability to capture the dynamics of fractional
systems.

Table 1. ARPSM solution comparison for the values of p of Example 1 for Q = 0.1.

€ ARPS Mp:0_52 ARPS Mp:0.72 ARPS Mpzl_()o Exact E}’I”OVP:LOQ
1.0 0.597480 0.597823 0.597918 0.597923  4.746940x107°
1.1 0.601882 0.602193 0.602280 0.602284 4.296239x107°
1.2 0.605857 0.606136 0.606214 0.606217 3.837431x107°
1.3 0.609395 0.609642 0.609710 0.609713 3.371748x107°
1.4 0.612487 0.612700 0.612759 0.612762 2.900316x107°
1.5 0.615125 0.615304 0.615354 0.615356 2.424166x107°
1.6 0.617301 0.617446 0.617486 0.617488 1.944232x107°
1.7 0.619010 0.619121 0.619151 0.619152 1.461368x107°
1.8 0.620248 0.620324 0.620344 0.620345 9.763596x107’
1.9 0.621010 0.621051 0.621061 0.621062 4.899361x107’
2.0 0.621296 0.621301 0.621302 0.621302 2.792130x1078

Ny L/
20 20

Figure 1. (a) ARPSM approximate solution, (b) exact solution.
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-20 -10 10 20

Figure 3. Fractional order 2D comparison using ARPSM for p = 0.32,0.52,0.72.

4.2. Example I using ATIM
Consider the Kawahara equation of fractional order:

’n(e, Q) ’n(e, Q)
e’ e’

on(e, Q)

Dln(e, Q) = e

— (e, Q) — (e, Q) where 0<p <1, (4.11)
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with the initial condition:

105 2
n(e, 0) = —sech? (2 ) (4.12)
and exact solution
105 o te-2
n(e, Q) = —sech* .
169 ) \/13
Apply AT on both sides of Eq (4.11) to obtain:

(k) 3
n"(e, 0) (9 n(e, Q) 0'n(e, Q) on(e, Q)
AlDj(e, )] = Z e o (e Q) (e Q=) (413)
Apply AIT on Eq (4.13) to obtain:
(k) 3
_ n"(e, 0) 3 n(e, Q) ’n(e, Q) on(e, Q)
e Q) = A= Z pomr o~ e ——=— e Q=) (414
Utilize AT iteratively to get:
(k)
n"(e, 0)
mle.Q) =47 Z )]
o 77(6, 0)
=4 [ 52 ]
105 €e—2
= sech4( )
169 V13
Applying the Riemann-Liouville integral on Eq (4.11),
105 e-2 n(e, Q) (e, Q) on(e, Q)
Q h|—= |- A /22 - Q— Q)2 4.15
’7(6)169C(2m)[aes n(e. Q) (e Q)= | (4.15)
Using the ATIM technique, we provide the following terms:
105 e-2
’Q = T~ h4 - >
e, = fggeet (<=
105 ~2 2(e -2 3(e-2
(e, Q) = (11940 cosh (=) + 1911 cosh (e )) ~ 104 cosh ( (e ))
2970344 V13I'(p + 1) V13 V13
2 2
— 2675 ) tanh sech!”
(e (22,
10592Psech18( 2 )
75 13 1 .1
,Q) = 354/ —47Q"T(p + = )(13(9385221 sinh (= V13(e - 2
(e, ) = A TR300534 144 V= (p " 2)( ( sin (5 V13(e - 2))
+ 120132725 sinh(M) ~ 910000 sinh( ) + 14144 si h(17(6 _ 2)))
2V13 213
. €=2 3(e-2) . (S(e—=2)
+ 581521261600 sinh (——= ) — 374464577051 smh( ) + 130226023125 sinh ( )
2V13 3 2V13
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12004154204 sinh (726 _ 32)) — 7059672300 sinh (9(6\/__2) ))sech’(=— 2 )/(PPT(IGP))

213 2V13
2 2e-2
————— (50957301372 cosh (Eﬁ) + 12586770193 cosh ( (i/ﬁ ))

28561
Tep+ D)

3(e-2) 4e-2) (4.16)

Vi3 Vi3

) + 3328 cosh (7(31_32)) - 4174214202))).

5(e - 2))

—12962735946 cosh
( VI3

6(e - 2)
Vi3

) + 13(155459002 cosh ( ) + 5233798 cosh (

707733 cosh (
The final solution that is obtained via ATIM is given as:

(€, Q) = 1o(€, Q) +11(€, ) +12(€, Q) + - - . (4.17)

105 -
n(e, Q) = sech4 ( QF (1 1940 cosh (6—

=)

-2 ) 105
213/ 2970344 V13L(p + 1)

2e-2)\ 3(e-2)y e—2 o €—2
+19llcosh( \/ﬁ) 1o4cosh( \/B) 2675)tanh(2m) ech (2\/_)

105Qsech*(:=2 rz)

+ C02BEI BI04 \/g“pmr(l? + %)(13(9385221 sinh (% Vi3(e - 2)

11(e-2 15( -2 (e _n
+ 120132725 sinh(g) ~ 910000 sinh(—s(e )) + 14144 sinh 7(e )))
NE G E

. -2 . (3(e=2) . (3(e=2)
+ 581521261600 sinh (26—13) ~ 374464577051 sinh ( 26 — ) + 130226023125 sinh ( 26 = )
— 12004154204 sinh (726 _ 32)) — 7059672300 sinh (9(6 _ 2)))sech7(i)) /(P’T(PT(3p))

2413 2413
€e—2 2(e—-2)
(50957301372 cosh (—) + 12586770193 cosh( )
3(e-2)
1

N 28561
I'Cp+1)

— 12962735946 cosh (

6(e —2)
Vi3

V13 Vi3
: ) + 13(155459002 cosh (4(6 _32)) + 5233798 cosh (

T(e—2)
"

5(e -2)
5

— 707733 cosh ) + 3328 cos ) - 4174214202))) +

(4.18)

Table 2 compares ATIM solutions for the same set of parameters, with similar trends observed as in
ARPSM, demonstrating the robustness of both methods. Figure 4 juxtaposes the ATIM approximate
solution (a) with the exact solution (b), verifying the precision of the ATIM method. Figure 5 compares
the fractional order solutions using ATIM for (p = 0.32,0.52,0.72), and Figure 6 presents a 2D version
of this comparison, highlighting the impact of the fractional order on the solution dynamics. Table 3
compares the absolute error for ARPSM and ATIM at Q = 0.1, demonstrating that both methods
achieve highly accurate solutions with minimal error.
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Table 2. ATIM solution comparison for the values of p of Example 1 for Q = 0.1.

€ ATIMP:()_SZ ATIMp:()jz ATIMp:l.OO Exact EI”I"OI”I,:LQO
1.0  0.597546 0.597850 0.597917  0.597923 6.195481x107°
1.1  0.601942 0.602218 0.602278  0.602284 5.609848x1076
1.2 0.605911 0.606158 0.606212  0.606217 5.012997x1076
1.3 0.609443 0.609661 0.609709  0.609713 4.406507x1076
1.4 0.612528 0.612717 0.612758  0.612762 3.791852x1076
1.5 0.615160 0.615318 0.615353  0.615356 3.170410x107°6
1.6 0.617329 0.617458 0.617485 0.617488 2.543461x107°
1.7  0.619032 0.619130 0.619150  0.619152 1.912204x10°°
1.8 0.620263 0.620329 0.620343  0.620345 1.277767x1076
1.9 0.621019 0.621054 0.621061  0.621062 6.412226x107’
2.0 0.621298 0.621302 0.621302  0.621302 3.606186x1078

Table 3. The comparison of absolute error of Example 1 for Q = 0.1.

€ ARPSM,., ATIM,, Exact Errorsgpsu Errorsriu

1.0 0.597918 0.597917 0.597923 4.746940x10™° 6.195481x107°
1.1 0.602280 0.602278 0.602284 4.296239x107° 5.609848x107°
1.2 0.606214 0.606212 0.606217 3.837431x107% 5.012997x107°¢
1.3 0.609710 0.609709 0.609713 3.371748x10°° 4.406507x107°
1.4 0.612759 0.612758 0.612762 2.900316x10°° 3.791852x107°
1.5 0.615354 0.615353 0.615356 2.424166x107% 3.170410x107°¢
1.6 0.617486 0.617485 0.617488 1.944232x107% 2.543461x107°
1.7 0.619151 0.619150 0.619152 1.461368x10™° 1.912204x107°
1.8  0.620344 0.620343 0.620345 9.763596x10~7 1.277767x107°
1.9 0.621061 0.621061 0.621062 4.899361x10~7 6.412226x1077
2.0 0.621302 0.621302 0.621302 2.792130x107® 3.606186x1078

Q

AIMS Mathematics

(b)

Figure 4. (a) ATIM approximate solution, (b) exact solution.
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Figure 5. Fractional order comparison using ATIM for p = 0.32,0.52,0.72.

-20 -10 10 20

Figure 6. Fractional order 2D comparison using ATIM for p = 0.32,0.52,0.72.

4.3. Example 2 using ARPSM
Examine the famous fifth-order KdV equations as follows:

n(e, Q) (e, Q) on(e, Q)

D? Q
ofl(€: L) + e’ oe’ Oe

— (e, Q) +1(€, Q) =0, where 0<p<1, 4.19)
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with the initial condition:
1(€,0) = e, (4.20)
and exact solution
n(e, Q) = <.

After applying AT to Eq (4.19), Eq (4.20) is used to obtain:

e 110n(e, s) 1 4 03145117(6, s)
7](6, S) - ; + ;[ 96 ] - ;AQ[AQ 7](6, S) X T:I (4 21)
W 0AG' (e, $)7 0 '
+ o Q[ QU(E,S)XT] =
Therefore, the k”-truncated term series is:
¢ o hEs)
ma@:;5+§:;w;, r=1,2,3,4---. (4.22)
r=1
Following is the RAF:
e 1 s)y 1 ) FPA (e, 5)
AqRes(e, s) =n(e, s) - = + —| T | = = Aq|Ag'n(e, 5) x —25—"=|
S sPL o QOe sP Ode (4.23)
Ly e oA nes)) o '
+s—17 Q[ QT](E,S)XT] =0,
and the k"*-RAFs is:
e 1;0m(e, s) 1 ~ A (e, 5)
AqResi(e,s) = (e, 5) = 5 + —[ 22 - —Ag[Agl (e, 5) x —2 ]
S sP Oe sP OJe (4.24)
1 B 0AG (e, 5) '
+ S_PAQ[AQ ﬂk(E, 5) X T] =0
It takes some calculation to find f,(e,s) for r = 1,2,3,.... Using these procedures, we replace

the r"-truncated series Eq (4.22) for the r"-RAF Eq (4.24), applying lim,_.(s""*!) and solving
AqgRes, (€,5)) =0,forr=1,2,3,---.

fie, s) = —e", (4.25)
fale, s) = e, (4.26)
fale, s) = =€, (4.27)

and so on.
Forr=1,2,3,---, replace f,(e, s) in Eq (4.22):
€ eE e€ ee

e
]7(6’ s) = ? N sptl + s2p+l B §3p+l to (428)
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Apply AIT to obtain:

QP . Q%P ecQP .
I'p+1) TICp+1) TI@p+1)

n(e, Q) = e (4.29)

Figure 7 explores the fractional order comparison using ARPSM for an extended range of p values
(p =0.33,0.55,0.77, 1.00), providing a more comprehensive analysis of how different orders affect the
solution. Figure 8 offers 2D and 3D graphs for ARPSM solutions, further highlighting the changes in
solution behavior as the fractional order varies.

‘ p=0.33 . p=0.55

p=0.77 p=1.00

- r;.ou (d) - 6’.00

(<)

Figure 7. Fractional order comparison using ARPSM for p = 0.33,0.55,0.77, 1.00.

= p=0.33
= p=0.55
m p=0.77
© p=1.00

(a N (b)

Figure 8. 2D and 3D graphs for comparing ARPSM solution for p = 0.33,0.55,0.77, 1.00.
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4.4. Example 2 using ATIM

Examine the famous fifth-order KdV equations as follows:

Q 0 Q 0 Q
Ined o e o Q)Me ) where 0<p<l.
Oe 3 663 Je

Dgn(e, Q) = -
with the initial condition:
(e, 0) = €,
and exact solution
(e, Q) = e

Apply AT on either side of Eq (4.30) to obtain:

+1(€,Q) - 1(€,Q)

m‘ﬂwem _ Pne.Q) e, Q) aMemD
6

AIDLi(e, Q)] = Ejﬂwk oo

3
k Oe

Apply AIT on either side of Eq (4.32) to obtain:

e, Q)

Q) =
n(e, ) e

+1(€, ) (e, Q)

L Eaten y dren)

on(e, Q)
e’ 7756 ])]

Iteratively apply the AT to obtain:

(k)
(€, 0)
mHWAWZﬂM]

(c.0)
=

=AY

=e.

Applying Riemann-Liouville integral on Eq (4.19),

(e, Q) d’n(e, Q) on(e, Q)]

n(e. Q) = e — A - o e Q) = (€. Q)

The use of the ATIM technique provides the following terms:

mole.Q) = ¢
m@QF—ig%,
m@m:ﬁg¥ﬁ
m@m:—i§¥ﬁ

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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The final solution that is obtained via ATIM is given as:

n(e, Q) = no(e, Q) + n1(e, Q) + 1m2(€, Q) +13(6, Q) + - - - . (4.36)
. Qr Q2r Q4r
e D=\l = s S " ey s ) TGra 1) +) (4.37)

Table 4 analyzes the effect of various fractional orders for ARPSM and ATIM, for Example 2,
indicating the consistency and accuracy of both methods across different fractional orders. Figures 9
and 10 continue the analysis for ATIM, comparing fractional order solutions and offering 3D and
2D views further to elucidate the complex behavior of fractional wave systems as modeled by the
Kawahara and KdV equations. These figures and tables collectively emphasize the efficacy of ARPSM
and ATIM in providing accurate and insightful solutions for fractional nonlinear PDEs, especially
in the context of nonlinear wave phenomena in applied mathematics and physics. The graphical
representations and error comparisons showcase the reliability and precision of these methods in
solving complex fractional models.

p=0.33 - " p=e.ss

p=0.77 " -~ p=1.00

Figure 9. Fractional order comparison using ATIM for p = 0.33,0.55,0.77, 1.00.

AIMS Mathematics Volume 9, Issue 11, 31898-31925.



31921

Q »
005

= p=0.33
u p=0.55
= p=0.77
u p=1.00

Figure 10. Fractional order 3D and 2D comparison using ATIM for p =
0.33,0.55,0.77, 1.00.

Table 4. Analysis of various fractional order of ARPSM and ATIM of Example 2 for Q = 0.1.
€ ARPSMATIM ARPSM ATIM ARPSM ATIM

p =0.55 p=0.77 p =1.00 Exact Error,-i
1.0 2.49168 2.63507 2.69123 2.69123  4.473861x1077
1.1 2.75373 2.91220 2.97427 2.97427 4.944381x1077
1.2 3.04335 3.21848 3.28708 3.28708 5.464386x107’
1.3 3.36342 3.55697 3.63279 3.63279  6.039081x107’
1.4 371715 3.93106 4.01485 4.01485 6.674217x1077
1.5 4.10809 4.34449 4.43710 4.43710 7.376150x1077
1.6 4.54014 4.80141 4.90375 4.90375 8.151907x107’
1.7 5.01763 5.30638 5.41948 5.41948 9.009250x107’
1.8 5.54534 5.86445 5.98945 5.98945 9.956761x107’
1.9 6.12855 6.48122 6.61937 6.61937 1.100392x107¢
2.0 6.77309 7.16286 7.31553 7.31553  1.216121x107°

The study utilizes advanced analytical methods, precisely the ARPSM and the ATIM, to investigate
the fractional Kawahara and fifth-order KdV equations. The discussion of figures and tables highlights
the effectiveness of these methods in providing accurate approximate solutions, comparing their results
with exact solutions, and examining the effects of fractional orders on the solutions.

5. Conclusions

In conclusion, our analytical investigation into the fractional Kawahara equation and fifth-order
KdV equations employing the ARPSM and ATIM has yielded significant insights and advancements in
understanding nonlinear wave phenomena. Through rigorous analysis and computational simulations,
we have demonstrated the effectiveness of these advanced analytical techniques in providing accurate
and insightful solutions to these complex equations governed by fractional calculus under the Caputo
operator framework. Our findings contribute to the theoretical understanding of nonlinear wave
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dynamics and offer practical analytical tools for addressing complex mathematical models in various
scientific and engineering domains. Further research in this direction holds promise for exploring
additional applications of the Aboodh methods and advancing our understanding of nonlinear wave
phenomena in diverse real-world contexts. Future research can extend the ARPSM and ATIM methods
to more complex nonlinear fractional PDEs, including those with higher-order fractional operators.
Exploring their application to multidimensional systems could provide deeper insights into wave
propagation in fields like quantum field theory. Investigating computational efficiency and convergence
across different fractional orders may optimize these techniques for broader use. Applying these
methods to real-world engineering problems could further validate their utility in practical settings.
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