In this study, we introduced several novel Hardy-type inequalities with negative parameters for monotone functions within the framework of delta calculus on time scales $ \mathbb{T} $. As an application, when $ \mathbb{T = N}_{0}, $ we derived discrete inequalities with negative parameters for monotone sequences, offering fundamentally new results. When $ \mathbb{T = R}, $ we established continuous analogues of inequalities that have appeared in previous literature. Additionally, we presented inequalities for other time scales, such as $ \mathbb{T} = q^{\mathbb{N}_{0}} $ for $ q > 1, $ which, to the best of the authors' knowledge, represented largely novel contributions.
Citation: Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk. Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales[J]. AIMS Mathematics, 2024, 9(11): 31926-31946. doi: 10.3934/math.20241534
In this study, we introduced several novel Hardy-type inequalities with negative parameters for monotone functions within the framework of delta calculus on time scales $ \mathbb{T} $. As an application, when $ \mathbb{T = N}_{0}, $ we derived discrete inequalities with negative parameters for monotone sequences, offering fundamentally new results. When $ \mathbb{T = R}, $ we established continuous analogues of inequalities that have appeared in previous literature. Additionally, we presented inequalities for other time scales, such as $ \mathbb{T} = q^{\mathbb{N}_{0}} $ for $ q > 1, $ which, to the best of the authors' knowledge, represented largely novel contributions.
[1] | G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965 |
[2] | G. H. Hardy, Notes on some points in the integral calculus, LX. An inequality between integrals, Messenger Math., 54 (1925), 150–156. |
[3] | P. Khajeh-Khalili, Generalization of a Hardy-Littlewood-Polya inequality, J. Approx. Theory, 66 (1991), 115–124. https://doi.org/10.1016/0021-9045(91)90116-R doi: 10.1016/0021-9045(91)90116-R |
[4] | G. J. Sinnamon, Weighted Hardy and Opial-type inequalities, J. Math. Anal. Appl., 160 (1991), 434–445. https://doi.org/10.1016/0022-247X(91)90316-R doi: 10.1016/0022-247X(91)90316-R |
[5] | V. D. Stepanov, Boundedness of linear integral operators on a class of monotone functions, Sib. Math. J., 32 (1991), 540–542. https://doi.org/10.1007/BF00970496 doi: 10.1007/BF00970496 |
[6] | Y. Bicheng, On a new Hardy type integral inequalities, Int. Math. Forum., 2 (2007), 3317–3322. |
[7] | B. Benaissa, M. Z. Sarikaya, Generalization of some Hardy-type integral inequality with negative parameter, Bull. Transilv. Univ. Bras. III, 13 (2020), 69–76. https://doi.org/10.31926/but.mif.2020.13.62.1.6 doi: 10.31926/but.mif.2020.13.62.1.6 |
[8] | P. Řehák, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 1–13. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495 |
[9] | E. S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, W. W. Mohammed, Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus, AIMS Math., 9 (2024), 5147–5170. https://doi.org/10.3934/math.2024250 doi: 10.3934/math.2024250 |
[10] | G. AlNemer, A. I. Saied, A. M. Hassan, C. Cesarano, H. M. Rezk, M. Zakarya, On some new dynamic inequalities involving C-monotonic functions on time scales, Axioms, 11 (2022), 1–13. https://doi.org/10.3390/axioms11110644 doi: 10.3390/axioms11110644 |
[11] | D. O'Regan, H. M. Rezk, S. H. Saker, Some dynamic inequalities involving Hilbert and Hardy-Hilbert operators with kernels, Results Math., 73 (2018), 1–22. https://doi.org/10.1007/s00025-018-0908-4 doi: 10.1007/s00025-018-0908-4 |
[12] | H. M. Rezk, A. I. Saied, G. AlNemer, M. Zakarya, On Hardy-Knopp type inequalities with kernels via time scale calculus, J. Math., 2022 (2022), 7997299. https://doi.org/10.1155/2022/7997299 doi: 10.1155/2022/7997299 |
[13] | S. H. Saker, H. M. Rezk, I. Abohela, D. Baleanu, Refinement multidimensional dynamic inequalities with general kernels and measures, J. Inequal. Appl., 2019 (2019), 306. https://doi.org/10.1186/s13660-019-2255-8 doi: 10.1186/s13660-019-2255-8 |
[14] | M. Bohner, S. G. Georgiev, Multivariable dynamic calculus on time scales, Cham: Springer, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9 |
[15] | M. Zakarya, G. AlNemer, A. I. Saied, H. M. Rezk, Novel generalized inequalities involving a general Hardy operator with multiple variables and general kernels on time scales, AIMS Math., 9 (2024), 21414–21432. https://doi.org/10.3934/math.20241040 doi: 10.3934/math.20241040 |
[16] | S. H. Saker, R. R. Mahmoud, A. Peterson, Weighted Hardy-type inequalities on time scales with applications, Mediterr. J. Math., 13 (2016), 585–606. https://doi.org/10.1007/s00009-014-0514-y doi: 10.1007/s00009-014-0514-y |
[17] | M. Bohner, A. Peterson, Dynamic equations on time scales: an introduction with applications, Boston: Birkhäuser, 2001. https://doi.org/10.1007/978-1-4612-0201-1 |
[18] | M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhäuser, 2003. https://doi.org/10.1007/978-0-8176-8230-9 |
[19] | R. P. Agarwal, D. O'Regan, S. H. Saker, Hardy type inequalities on time scales, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-44299-0 |