In this paper, we consider a class of Clifford-valued stochastic high-order Hopfield neural networks with time-varying delays whose coefficients are Clifford numbers except the time delays. Based on the Banach fixed point theorem and inequality techniques, we obtain the existence and global exponential stability of almost periodic solutions in distribution of this class of neural networks. Even if the considered neural networks degenerate into real-valued, complex-valued and quaternion-valued ones, our results are new. Finally, we use a numerical example and its computer simulation to illustrate the validity and feasibility of our theoretical results.
Citation: Nina Huo, Bing Li, Yongkun Li. Global exponential stability and existence of almost periodic solutions in distribution for Clifford-valued stochastic high-order Hopfield neural networks with time-varying delays[J]. AIMS Mathematics, 2022, 7(3): 3653-3679. doi: 10.3934/math.2022202
In this paper, we consider a class of Clifford-valued stochastic high-order Hopfield neural networks with time-varying delays whose coefficients are Clifford numbers except the time delays. Based on the Banach fixed point theorem and inequality techniques, we obtain the existence and global exponential stability of almost periodic solutions in distribution of this class of neural networks. Even if the considered neural networks degenerate into real-valued, complex-valued and quaternion-valued ones, our results are new. Finally, we use a numerical example and its computer simulation to illustrate the validity and feasibility of our theoretical results.
[1] | J. Pearson, D. Bisset, Neural networks in the Clifford domain, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94), 1994, 1465–1469. doi: 10.1109/ICNN.1994.374502. doi: 10.1109/ICNN.1994.374502 |
[2] | E. Bayro-Corrochano, R. Vallejo, N. Arana-Daniel, Geometric preprocessing, geometric feedforward neural networks and Clifford support vector machines for visual learning, Neurocomputing, 67 (2005), 54–105. doi: 10.1016/j.neucom.2004.11.041. doi: 10.1016/j.neucom.2004.11.041 |
[3] | S. Buchholz, G. Sommer, On Clifford neurons and Clifford multi-layer perceptrons, Neural Networks, 21 (2008), 925–935. doi: 10.1016/j.neunet.2008.03.004. doi: 10.1016/j.neunet.2008.03.004 |
[4] | E. Hitzer, T. Nitta, Y. Kuroe, Applications of Clifford's geometric algebra, Adv. Appl. Clifford Algebras, 23 (2013), 377–404. doi: 10.1007/s00006-013-0378-4. doi: 10.1007/s00006-013-0378-4 |
[5] | Y. Liu, P. Xu, J. Lu, J. Liang, Global stability of Clifford-valued recurrent neural networks with time delays, Nonlinear Dyn., 84 (2016), 767–777. doi: 10.1007/s11071-015-2526-y. doi: 10.1007/s11071-015-2526-y |
[6] | Y. Li, Y. Wang, B. Li, The existence and global exponential stability of $\mu$-pseudo almost periodic solutions of Clifford-valued semi-linear delay differential equations and an application, Adv. Appl. Clifford Algebras, 29 (2019), 105. doi: 10.1007/s00006-019-1025-5. doi: 10.1007/s00006-019-1025-5 |
[7] | S. Shen, Y. Li, $S^{p}$-almost periodic solutions of Clifford-valued fuzzy cellular neural networks with time-varying delays, Neural Process. Lett., 51 (2020), 1749–1769. doi: 10.1007/s11063-019-10176-9. doi: 10.1007/s11063-019-10176-9 |
[8] | Y. Li, N. Huo, B. Li, On $\mu$-pseudo almost periodic solutions for Clifford-valued neutral type neural networks with delays in the leakage term, IEEE T. Neur. Net. Lear., 32 (2021), 1365–1374. doi: 10.1109/TNNLS.2020.2984655. doi: 10.1109/TNNLS.2020.2984655 |
[9] | G. Rajchakit, R. Sriraman, P. Vignesh, C. P. Lim, Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis, Appl. Math. Comput., 407 (2021), 126309. doi: 10.1016/j.amc.2021.126309. doi: 10.1016/j.amc.2021.126309 |
[10] | A. Chaouki, F. Touati, Global dissipativity of Clifford-valued multidirectional associative memory neural networks with mixed delays, Comp. Appl. Math., 39 (2020), 310. doi: 10.1007/s40314-020-01367-5. doi: 10.1007/s40314-020-01367-5 |
[11] | C. Aouiti, I. Gharbia, Dynamics behavior for second-order neutral Clifford differential equations: inertial neural networks with mixed delays, Comp. Appl. Math., 39 (2020), 120. doi: 10.1007/s40314-020-01148-0. doi: 10.1007/s40314-020-01148-0 |
[12] | C. Aouiti, F. Dridi, Weighted pseudo almost automorphic solutions for neutral type fuzzy cellular neural networks with mixed delays and D operator in Clifford algebra, Int. J. Syst. Sci., 51 (2020), 1759–1781. doi: 10.1080/00207721.2020.1777345. doi: 10.1080/00207721.2020.1777345 |
[13] | S. Shen, Y. Li, Weighted pseudo almost periodic solutions for Clifford-valued neutral-type neural networks with leakage delays on time scales, Adv. Differ. Equ., 2020 (2020), 286. doi: 10.1186/s13662-020-02754-2. doi: 10.1186/s13662-020-02754-2 |
[14] | N. Huo, B. Li, Y. Li, Anti-periodic solutions for Clifford-valued high-order Hopfield neural networks with state-dependent and leakage delays, Int. J. Appl. Math. Comput. Sci., 30 (2020), 83–98. doi: 10.34768/amcs-2020-0007. doi: 10.34768/amcs-2020-0007 |
[15] | X. Liu, Q. Wang, Impulsive stabilization of high-order Hopfield-type neural networks with time-varying delays, IEEE Trans. Neural Networ, 19 (2008), 71–79. doi: 10.1109/TNN.2007.902725. doi: 10.1109/TNN.2007.902725 |
[16] | C. Ou, Anti-periodic solutions for high-order Hopfield neural networks, Comput. Math. Appl., 56 (2008), 1838–1844. doi: 10.1016/j.camwa.2008.04.029. doi: 10.1016/j.camwa.2008.04.029 |
[17] | Z. He, C. Li, H. Li, Q. Zhang, Global exponential stability of high-order Hopfield neural networks with state-dependent impulses, Physica A, 542 (2020), 123434. doi: 10.1016/j.physa.2019.123434. doi: 10.1016/j.physa.2019.123434 |
[18] | X. Meng, Y. Li, Pseudo almost periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays and leakage delays on time scales, AIMS Mathematics, 6 (2021), 10070–10091. doi: 10.3934/math.2021585. doi: 10.3934/math.2021585 |
[19] | S. Blythe, X. Mao, X. Liao, Stability of stochastic delay neural networks, J. Franklin I., 338 (2001), 481–495. doi: 10.1016/S0016-0032(01)00016-3. doi: 10.1016/S0016-0032(01)00016-3 |
[20] | Y. Ren, Q. He, Y. Gu, R. Sakthivel, Mean-square stability of delayed stochastic neural networks with impulsive effects driven by G-Brownian motion, Stat. Probabil. Lett., 143 (2018), 56–66. doi: 10.1016/j.spl.2018.07.024. doi: 10.1016/j.spl.2018.07.024 |
[21] | L. Liu, A. Wu, Z. Zeng, T. Huang, Global mean square exponential stability of stochastic neural networks with retarded and advanced argument, Neurocomputing, 247 (2017), 156–164. doi: 10.1016/j.neucom.2017.03.057. doi: 10.1016/j.neucom.2017.03.057 |
[22] | R. Suresh, A. Manivannan, Robust stability analysis of delayed stochastic neural networks via Wirtinger-based integral inequality, Neural Comput., 33 (2021), 227–243. doi: 10.1162/neco_a_01344. doi: 10.1162/neco_a_01344 |
[23] | Y. Wang, J. Lou, H. Yan, J. Lu, Stability criteria for stochastic neural networks with unstable subnetworks under mixed switchings, Neurocomputing, 452 (2021), 827–833. doi: 10.1016/j.neucom.2019.10.119. doi: 10.1016/j.neucom.2019.10.119 |
[24] | Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE Trans. Auto. Control, 64 (2019), 3764–3771. doi: 10.1109/TAC.2018.2882067. doi: 10.1109/TAC.2018.2882067 |
[25] | Q. Zhu, T. Huang, Stability analysis for a class of stochastic delay nonlinear systems driven by G-Brownian motion, Syst. Control Lett., 140 (2020), 104699. doi: 10.1016/j.sysconle.2020.104699. doi: 10.1016/j.sysconle.2020.104699 |
[26] | H. Wang, Q. Zhu, Global stabilization of a class of stochastic nonlinear time-delay systems with SISS inverse dynamics, IEEE Trans. Auto. Control, 65 (2020), 4448–4455. doi: 10.1109/TAC.2020.3005149. doi: 10.1109/TAC.2020.3005149 |
[27] | R. Rajan, V. Gandhi, P. Soundharajan, Y. Joo, Almost periodic dynamics of memristive inertial neural networks with mixed delays, Inform. Sciences, 536 (2020), 332–350. doi: 10.1016/j.ins.2020.05.055. doi: 10.1016/j.ins.2020.05.055 |
[28] | P. Wan, D. Sun, M. Zhao, S. Huang, Multistability for almost-periodic solutions of takagi-sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions and time-varying delays, IEEE T. Fuzzy Syst., 29 (2021), 400–414. doi: 10.1109/TFUZZ.2019.2955886. doi: 10.1109/TFUZZ.2019.2955886 |
[29] | M. Bohner, G. Stamov, I. Stamova, Almost periodic solutions of Cohen-Grossberg neural networks with time-varying delay and variable impulsive perturbations, Commun. Nonlinear Sci., 80 (2020), 104952. doi: 10.1016/j.cnsns.2019.104952. doi: 10.1016/j.cnsns.2019.104952 |
[30] | O. Mellah, P. Fitte, Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients, Electron. J. Differ. Eq., 2013 (2013), 1–7. |
[31] | F. Brackx, R. Delanghe, F. Sommen, Clifford analysis, Boston: Pitman Books Limited, 1982. |
[32] | A. Klenke, Probability theory: a comprehensive course, Berlin: Springer, 2008. |
[33] | Z. Liu, K. Sun, Almost automorphic solutions for stochastic differential equations driven by Lévy noise, J. Funct. Anal., 266 (2014), 1115–1149. doi: 10.1016/j.jfa.2013.11.011. doi: 10.1016/j.jfa.2013.11.011 |
[34] | P. H. Bezandry, T. Diagana, Almost periodic stochastic processes, New York: Springer, 2011. |
[35] | T. Morozan, C. Tudor, Almost periodic solutions of affine Itô equations, Stoch. Anal. Appl., 7 (1989), 451–474. doi: 10.1080/07362998908809194. doi: 10.1080/07362998908809194 |
[36] | M. Kamenskii, O. Mellah, P. Raynaud-de-Fitte, Weak averaging of semilinear stochastic differential equations with almost periodic coefficients, J. Math. Anal. Appl., 427 (2015), 336–364. doi: 10.1016/j.jmaa.2015.02.036. doi: 10.1016/j.jmaa.2015.02.036 |
[37] | Y. Li, X. Wang, Almost periodic solutions in distribution of Clifford-valued stochastic recurrent neural networks with time-varying delays, Chaos Soliton. Fract., 153 (2021), 111536. doi: 10.1016/j.chaos.2021.111536. doi: 10.1016/j.chaos.2021.111536 |