Citation: George Rosensteel. Differential geometry of collective models[J]. AIMS Mathematics, 2019, 4(2): 215-230. doi: 10.3934/math.2019.2.215
[1] | B. Riemann, Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abh. K. Ges. Wiss. Göttingen, 9 (1860), 43-66. |
[2] | N. R. Lebovitz, Rotating fluid masses, Annu. Rev. Astron. Astr., 5 (1967), 465-480. doi: 10.1146/annurev.aa.05.090167.002341 |
[3] | S. Chandrasekhar, Ellipsoidal Figures of Equilibrium, New Haven: Yale Univ. Press, 1969. |
[4] | T. Iwai, A gauge theory for the quantum planar three-body problem, J. Math. Phys., 28 (1987), 964-974. doi: 10.1063/1.527588 |
[5] | T. Iwai, A geometric setting for internal motions of the quantum three-body problem, J. Math. Phys., 28 (1987), 1315-1326. doi: 10.1063/1.527534 |
[6] | A. Shapere and F. Wilczek, Geometric Phases in Physics, Singapore: World Scientific, 1989. |
[7] | A. Shapere and F. Wilczek, Gauge kinematics of deformable bodies, Am. J. Phys., 57 (1989), 514-518. |
[8] | M. J. Enos, Dynamics and Control of Mechanical Systems: The Falling Cat and Related Problems, Providence, RI: American Mathematical Society, 1993. |
[9] | J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, New York: Springer-Verlag, 1994. |
[10] | A. Bohr and B. R. Mottelson, Nuclear Structure, v. II, Reading, MA: Benjamin, 1976. |
[11] | P. G. L. Dirichlet, UntersuchungenÜber ein Problem der Hydrodynamik, 1860. 181. |
[12] | N. R. Lebovitz, On the fission theory of binary stars. IV - Exact solutions in polynomial spaces, The Astrophysical Journal, 284 (1984), 364-380. doi: 10.1086/162415 |
[13] | M. Fujimoto, Gravitational collapse of rotating gaseous ellipsoids, The Astrophysical Journal, 152 (1968), 523-536. doi: 10.1086/149569 |
[14] | D. Lyndon-Bell, On the gravitational collapse of a cold rotating gas cloud, Mathematical Proceedings of the Cambridge Philosophical Society, 58 (1962), 709-711. doi: 10.1017/S0305004100040767 |
[15] | J. P. Cox, Theory of Stellar Pulsation, Princeton: Princeton Univ. Press, 1980. |
[16] | M. D. Weinberg and S. Tremaine, The Riemann disks I. Equilibrium and secular evolution, The Astrophysical Journal, 271 (1983), 586-594. doi: 10.1086/161225 |
[17] | F. J. Dyson, Dynamics of a spinning gas cloud, Indiana U. Math. J., 18 (1968), 91-101. doi: 10.1512/iumj.1969.18.18009 |
[18] | S. Cohen, F. Plasil and W. J. Swiatecki, Equilibrium configurations of rotating charged or gravitating liquid masses with surface tension. II, Ann. Phys. (N.Y.), 82 (1974), 557-596. doi: 10.1016/0003-4916(74)90126-2 |
[19] | G. Rosensteel, Lax representations of Riemann ellipsoids, Appl. Math. Lett., 6 (1993), 55-58. |
[20] | N. Steenrod, The Topology of Fibre Bundles, Princeton: Princeton Univ. Press, 1951. |
[21] | S, Kobayashi and K. Nomizu, Foundations of Differential Geometry, New York: Interscience, 1963. |
[22] | S. Y. Shieh, Lagrange equations for a spinning gas cloud, J. Math. Phys. 24 (1983), 2438-2440. doi: 10.1063/1.525625 |
[23] | G. Rosensteel, Rapidly rotating nuclei as Riemann ellipsoids, Ann. Phys. (N.Y.), 186 (1988), 230-291. doi: 10.1016/0003-4916(88)90002-4 |
[24] | G. Rosensteel and H. Q. Tran, Hamiltonian dynamics of self-gravitating ellipsoids The Astrophysical Journal, 366 (1991), 30-37. |
[25] | T. R. Kane and M. P. Sher, A dynamical explanation of the falling cat phenomena, Int. J. Solids Struct., 5 (1969), 663-670. doi: 10.1016/0020-7683(69)90086-9 |
[26] | M. J. Enos, Dynamics and Control of Mechanical Systems: The Falling Cat and Related Problems, Providence, RI: American Mathematical Society, 1993. |
[27] | D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models, Singapore: World Scientific, 2010. |
[28] | J. M. Eisenberg and W. Greiner, Nuclear Theory: Nuclear Models, Amsterdam: North-Holland, 2010. |
[29] | R. G. Littlejohn and M. Reinsch, Gauge fields in the separation of rotations and internal motions in the n-body problem, Rev. Mod. Phys., 69 (1997), 213-275. doi: 10.1103/RevModPhys.69.213 |
[30] | E. Massa and E. Pagani, Classical dynamics of non-holonomic systems: a geometric approach, Annales De L Institut Henri Poincare-physique Theorique, 55 (1991), 511-544. |
[31] | L. Bates and J. Sniatycki, Nonholonomic reduction Rep. Math. Phys.. 32 (1993), 99-115. |