Citation: Quting Chen, Yadong Shang. Direct similarity reductions and new exact solutions of the short pulse equation[J]. AIMS Mathematics, 2019, 4(2): 231-241. doi: 10.3934/math.2019.2.231
[1] | T. Schäfer, C. E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media, Physica D, 196 (2004), 90-105. doi: 10.1016/j.physd.2004.04.007 |
[2] | Y. Chung, C. K. R. T. Jones, T. Schäfer, et al. Ultra-short pulses in linear and nonlinear media, Nonlinearity, 18 (2005), 1351-1374. doi: 10.1088/0951-7715/18/3/021 |
[3] | M. L. Robelo, On equations which describe pseudospherical surfaces, Stud. Appl. Math., 81 (1989), 221-248. doi: 10.1002/sapm1989813221 |
[4] | R. Beals, M. Rabelo, K. Tenenblat, Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations, Stud. Appl. Math., 81 (1989), 125-151. doi: 10.1002/sapm1989812125 |
[5] | A. Sakovich, S. Sakovich, The short pulse equation is integrable, J. Phys. Soc. Jpn., 74 (2005), 239-241. doi: 10.1143/JPSJ.74.239 |
[6] | A. Sakovich, S. Sakovich, Solitary wave solutions of the short pulse equation, J. Phys. A, 39 (2006), L361-L367. |
[7] | E. J. Parkes, A note on loop-soliton solutions of the short pulse equation, Phys. Lett. A, 374 (2010), 4321-4323. doi: 10.1016/j.physleta.2010.08.061 |
[8] | E. J. Parkes, Some periodic and solitary traveling-wave solutions of the short-pulse equation, Chaos Soliton. Fract., 38 (2008), 154-159. doi: 10.1016/j.chaos.2006.10.055 |
[9] | H. Z. Liu, J. B. Li, Lie symmetry analysis and exact solutions for the short pulse equation, Nonlinear Anal. Theor., 71 (2009), 2126-2133. doi: 10.1016/j.na.2009.01.075 |
[10] | K. Fakhar, G. W. Wang, A. H. Kara, Symmetry reductions and conservation laws of the short pulse equation, Optik, 127 (2016), 10201-10207. doi: 10.1016/j.ijleo.2016.08.013 |
[11] | S. L. Xie, X. C. Hong, B. Gao, The periodic traveling-wave solutions of the short-pulse equation, Appl. Math. Comput., 218 (2011), 2542-2548. |
[12] | Y. Matsuno, Multiloop soliton and multibreather solutions of the short pulse model equation, J. Phy. Soc. Jpn., 76 (2007), 084003. |
[13] | Y. Matsuno, Periodic solutions of the short pulse model equation, J. Math. Phys., 49 (2008), 073508. |
[14] | Y. L. Ma, B. Q. Li, Some new Jacobi elliptic function solutions for the short-pulse equation via a direct symbolic computation method, J. Appl. Math. Comput., 40 (2012), 683-690. doi: 10.1007/s12190-012-0565-9 |
[15] | B. F. Feng, Complex short pulse and coupled complex short pulse equations, Physica D, 297 (2015), 62-75. doi: 10.1016/j.physd.2014.12.002 |
[16] | B. F. Feng, L. M. Ling, Z. N. Zhu, Defocusing complex short-pulse equation and its multi-dark-soliton solution, Phys. Rev. E, 93 (2016), 052227. |
[17] | L. M. Ling, B. F. Feng, Z. N. Zhu, Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation, Physica D, 327 (2016), 13-29. doi: 10.1016/j.physd.2016.03.012 |
[18] | S. Sakovich, Transformation and integrability of a generalized short pulse equation, Comm. Nonlinear Sci. Numer. Simulat., 39 (2016), 21-28. doi: 10.1016/j.cnsns.2016.02.031 |
[19] | S. F. Shen, B. F. Feng, Y. Ohta, From the real and complex coupled dispersionless equations to the real and complex short pulse equations, Stud. Appl. Math., 136 (2016), 64-88. doi: 10.1111/sapm.12092 |
[20] | S. F. Shen, B. F. Feng, Y. Ohta, A modified complex short pulse equation of defocusing type, J. Nonlinear Math. Phy., 24 (2017), 195-209. doi: 10.1080/14029251.2017.1306946 |
[21] | Q. L. Zha, The interaction solitons for the complex short pulse equation, Comm. Nonlinear Sci. Numer. Simulat., 47 (2017), 379-393. doi: 10.1016/j.cnsns.2016.12.007 |
[22] | R. K. Gupta, V. Kumar, R. Jiwari, Exact and numerical solutions of coupled short pulse equation with time-dependent coefficients, Nonlinear Dyn., 79 (2015), 455-464. doi: 10.1007/s11071-014-1678-5 |
[23] | B. F. Feng, K. I. Maruno, Y. Ohta, Integrable discretizations of the short pulse equation, J. Phys. A: Math. Theor., 43 (2010), 085203. |
[24] | J. C. Brunelli, The short pulse hierarchy, J. Math. Phys., 46 (2005), 123507. |
[25] | H. Z. Liu, J. B. Li, L. Liu, Complete group classification and exact solutions to the extended short pulse equation, Int. J. Nonlin. Mechs., 47 (2012), 694-698. doi: 10.1016/j.ijnonlinmec.2011.11.006 |
[26] | W. G. Rui, Different kinds of exact solutions with two-loop character of the two-component short pulse equations of the first kind, Comm. Nonlinear Sci. Numer. Simulat., 18 (2013), 2667-2678. doi: 10.1016/j.cnsns.2013.01.020 |
[27] | B. F. Feng, An integrable coupled short pulse equation, J. Phys. A: Math. Theor., 45 (2012), 1262-1275. |
[28] | V. Kumar, R. K. Gupta, R. Jiwari, Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation, Chin. Phys. B, 22 (2013), 050201. |
[29] | B. Q. Li, Y. L. Ma, Periodic solutions and solitons to two complex short pulse (CSP) equations in optical fiber, Optik, 144 (2017), 149-155. doi: 10.1016/j.ijleo.2017.06.114 |
[30] | Z. Popowicz, Lax representations for matrix short pulse equations, J. Math. Phys., 58 (2017), 103506. |
[31] | A. N. W. Hone, V. Novikov, J. P. Wang, Generalizations of the short pulse equation, Lett. Math. Phys., 108 (2018), 927-947. |
[32] | P. A. Clarkson, M. D. Kruskal, New similarity reductions of the Boussinesq equation, J. Math. Phys., 30 (1989), 2201-2213. doi: 10.1063/1.528613 |
[33] | P. A. Clarkson, New similarity solutions for the modified Boussinesq equation, J. Phys. A: Math. Gen., 22 (1989), 2355-2367. doi: 10.1088/0305-4470/22/13/029 |
[34] | S. Y. Lou, A note on the new similarity reductions of the Boussinesq equation, Phys. Lett. A, 151 (1990), 133-135. doi: 10.1016/0375-9601(90)90178-Q |
[35] | C. Z. Qu, F. M. Mahomed, An extension of the direct method via an application, Quaest. Math., 24 (2001), 111-122. doi: 10.1080/16073606.2001.9639778 |
[36] | D. J. Arrigo, P. Broadbridge, J.M. Hill, Nonclassical symmetry solutions and the methods of Bluman-Cole and Clarkson-Kruskal, J. Math. Phys., 34 (1993), 4692-4703. doi: 10.1063/1.530365 |
[37] | B. M. Vaganan, R. Asokan, Direct similarity analysis of generalized Burgers equations and perturbation solutions of Euler-Painlevé transcendents, Stud. Appl. Math., 111 (2003), 435-451. doi: 10.1111/1467-9590.t01-1-00041 |
[38] | M. C. Nucci, P. A. Clarkson, The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation, Phys. Lett. A, 164 (1992), 49-56. doi: 10.1016/0375-9601(92)90904-Z |