Citation: Anthony Overmars, Lorenzo Ntogramatzidis, Sitalakshmi Venkatraman. A new approach to generate all Pythagorean triples[J]. AIMS Mathematics, 2019, 4(2): 242-253. doi: 10.3934/math.2019.2.242
[1] | L. E. Dickson. History of The Theory of Numbers: Diophantine Analysis, 2Eds., London: Dover Publications, 2005. |
[2] | B. Berggren, Pytagoreiska trianglar, Elementa: Tidskrift för elementär matematik, fysik och kemi, 17 (1934): 129-139 (in Swedish). |
[3] | F. J. M. Barning, Over pythagorese en bijna-pythagorese driehoeken en een generatieproces met behulp van unimodulaire matrices (in Dutch), Math. Centrum Amsterdam Afd. Zuivere Wisk. ZW-011 (1963): 37 pages. |
[4] | E. Maor, The Pythagorean Theorem: A 4,000-Year History, Princeton, New Jersey: Princeton University Press, 2007. |
[5] | A. Proclus, Commentary on the First Book of Euclid's Elements, English translation by G. R. Morrow, Princeton, NJ: Princeton University Press, 1970. |
[6] | R. A. Trivedi, S. A. Bhanotar, Pythagorean Triplets - Views, Analysis and Classification, IIOSR J. Math., 11 (2015), 54-63. |
[7] | W. Sierpinski, Pythagorean triangles, Scripta Mathematica Studies, No. 9, New York: Yeshiva University, 1962. |
[8] | D. Cass, P. J. Arpaia, Matrix generation of Pythagorean n-tuples, P. Am. Math. Soc., 109 (1990), 1-7. |
[9] | S. Frisch, L. Vasertein, Parameterization of Pythagorean triples by a single triple of polynomials, J. Pure Appl. Algebra, 212 ( 2008), 271-274. |
[10] | L. Vasertein, T. Sakkalis, S. Frisch, Polynomial parameterization of Pythagorean tuples, Int. J. Number Theory, 6 (2010), 1261-1272. doi: 10.1142/S1793042110003496 |
[11] | J. Beery, J. A. Stedall, Thomas Harriot's Doctrine of Triangular Numbers: The "Magisteria Magna", European Mathematical Society, 2009. |
[12] | J. Rukavicka, Dickson's method for generating Pythagorean triples revisited, Eur. J. Pure Appl. Math., 6 (2013), 363-364. |
[13] | E. Asmaryan, On the generation of Pythagorean triples and representation of integers as a difference of two squares, Int. J. Math. Comput. Sci., 13 (2018), 59-71. |
[14] | T. Roy, F. J. Sonia, A direct method to generate Pythagorean triples and its generalization to Pythagorean quadruples and n-tuples, arXiv:1201.2145 [math.NT], (2012), 1-11. |
[15] | A. Overmars, L. Ntogramatzidis, A new parameterisation of Pythagorean triples in terms of odd and even series, arXiv:1504.03163 [math.HO], (2015), 1-9. |
[16] | J. H. Barnett, Generating Pythagorean triples: the methods of Pythagoras and of Plato via Gnomons, Number Theory, 7 (2017). |
[17] | J. H. Silverman, A Friendly Introduction to Number Theory, Prentice Hall, 1997. |
[18] | W. Wyss, Perfect Parallelograms, Am. Math. Mon., 119 (2012), 513-515. doi: 10.4169/amer.math.monthly.119.06.513 |
[19] | A. F. Horadam, Fibonacci number triples, Am. Math. Mon., 68 (1961), 751-753. doi: 10.1080/00029890.1961.11989762 |
[20] | D. McCullough, Height and excess of Pythagorean triples, Math. Mag., 78 (2005), 26-44. doi: 10.1080/0025570X.2005.11953298 |
[21] | R. Guy, Unsolved Problems in Number Theory, 3Eds., New York: Springer, 2004. |
[22] | A. Hall, Genealogy of Pythagorean triads, Math. Gaz., 54 (1970), 377-379. |
[23] | T. Sakkalis, R. T. Farouki, Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3, J. Comput. Appl. Math., 236 (2012), 4375-4382. doi: 10.1016/j.cam.2012.04.002 |
[24] | R. Amato, A characterization of Pythagorean triples, JP J. Algebra, Number Theory Appl., 39 (2017), 221-230. doi: 10.17654/NT039020221 |
[25] | A. Overmars, S. Venkatraman, Pythagorean-Platonic lattice method for finding all co-prime right angle triangles, Int. J. Comput. Inf. Eng., 11 (2017), 1192-1195. |
[26] | A. Overmars, S. Venkatraman, A new method of golden ratio computation for faster cryptosystems, Proceedings of IEEE Cybersecurity and Cyberforensics Conference, London (UK), 21-23 Nov. 2017. |
[27] | A. Overmars, S. Venkatraman, S. Parvin, Revisiting square roots with a fast estimator, London J. Res. Comput. Sci. Technol., 18 (2018), Compilation 10. |
[28] | S. Kak, M. Prabhu, Cryptographic applications of primitive Pythagorean triples, Cryptologia, 38 (2014), 215-222. doi: 10.1080/01611194.2014.915257 |
[29] | T. Omland, How many Pythagorean triples with a given inradius? J. Number Theory, 170 (2017), Supplement C: 1-2. |