Research article

Tripled fixed point techniques for solving system of tripled-fractional differential equations

  • Received: 18 October 2020 Accepted: 11 December 2020 Published: 16 December 2020
  • MSC : 26A33, 34A08, 34B24, 39A70, 47H10, 54H25

  • The intended goal of this manuscript is to discuss the existence of the solution to the below system of tripled-fractional differential equations (TFDEs, for short):

    $ \left\{ \begin{array}{c} \Theta ^{\mu }\left[ k(\alpha )-\gimel (\alpha ,k(\alpha ))\right] = \Game \left( \alpha ,r(\alpha ),I^{\tau }(r(\alpha ))\right) +\Game \left( \alpha ,l(\alpha ),I^{\tau }(l(\alpha ))\right) , \\ \Theta ^{\mu }\left[ l(\alpha )-\gimel (\alpha ,l(\alpha ))\right] = \Game \left( \alpha ,k(\alpha ),I^{\tau }(k(\alpha )\right) )+\Game \left( \alpha ,r(\alpha ),I^{\tau }(r(\alpha )\right) ), \\ \Theta ^{\mu }\left[ r(\alpha )-\gimel (\alpha ,r(\alpha ))\right] = \Game \left( \alpha ,l(\alpha ),I^{\tau }(l(\alpha )\right) )+\Game \left( \alpha ,k(\alpha ),I^{\tau }(k(\alpha )\right) ), \\ k(0) = 0,\text{ }l(0) = 0,\text{ }r(0) = 0, \end{array} \right. a.e.\text{ }\alpha \in \Omega ,\text{ }\tau >0,\text{ }\mu \in (0,1), $

    where $ \Theta ^{\mu } $ is RL-fractional derivative of order $ \tau, \; \Omega = [0, \Lambda ], \; \Lambda > 0, $ and $ \gimel :\Omega \times \mathbb{R} \rightarrow \mathbb{R}, $ with $ \gimel (0, 0) = 0, \; \Game :\Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} $ are functions taken under appropriate hypotheses. The method of the proof depends on a manner of a tripled fixed point (TFP), which generalize a fixed point theorem of Burton [1]. At last, a non-trivial example to strong our results is illustrated.

    Citation: Hasanen A. Hammad, Manuel De la Sen. Tripled fixed point techniques for solving system of tripled-fractional differential equations[J]. AIMS Mathematics, 2021, 6(3): 2330-2343. doi: 10.3934/math.2021141

    Related Papers:

  • The intended goal of this manuscript is to discuss the existence of the solution to the below system of tripled-fractional differential equations (TFDEs, for short):

    $ \left\{ \begin{array}{c} \Theta ^{\mu }\left[ k(\alpha )-\gimel (\alpha ,k(\alpha ))\right] = \Game \left( \alpha ,r(\alpha ),I^{\tau }(r(\alpha ))\right) +\Game \left( \alpha ,l(\alpha ),I^{\tau }(l(\alpha ))\right) , \\ \Theta ^{\mu }\left[ l(\alpha )-\gimel (\alpha ,l(\alpha ))\right] = \Game \left( \alpha ,k(\alpha ),I^{\tau }(k(\alpha )\right) )+\Game \left( \alpha ,r(\alpha ),I^{\tau }(r(\alpha )\right) ), \\ \Theta ^{\mu }\left[ r(\alpha )-\gimel (\alpha ,r(\alpha ))\right] = \Game \left( \alpha ,l(\alpha ),I^{\tau }(l(\alpha )\right) )+\Game \left( \alpha ,k(\alpha ),I^{\tau }(k(\alpha )\right) ), \\ k(0) = 0,\text{ }l(0) = 0,\text{ }r(0) = 0, \end{array} \right. a.e.\text{ }\alpha \in \Omega ,\text{ }\tau >0,\text{ }\mu \in (0,1), $

    where $ \Theta ^{\mu } $ is RL-fractional derivative of order $ \tau, \; \Omega = [0, \Lambda ], \; \Lambda > 0, $ and $ \gimel :\Omega \times \mathbb{R} \rightarrow \mathbb{R}, $ with $ \gimel (0, 0) = 0, \; \Game :\Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} $ are functions taken under appropriate hypotheses. The method of the proof depends on a manner of a tripled fixed point (TFP), which generalize a fixed point theorem of Burton [1]. At last, a non-trivial example to strong our results is illustrated.



    加载中


    [1] T. A. Burton, A fixed point theorem of Krasnoselskii, Appl. Math. Lett., 11 (1998), 85–88.
    [2] X. Gao, J. Yu, Synchronization of two coupled fractional-order chaotic oscillators, Chaos Sol. Fract., 26 (2005), 141–145. doi: 10.1016/j.chaos.2004.12.030
    [3] J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Engng., 167 (1998), 57–68. doi: 10.1016/S0045-7825(98)00108-X
    [4] H. Jafari, V. Daftardar-Gejji, Solving a system of nonlinear fractional differential equations using Adomian decomposition, J. Comput. Appl., Math., 196 (2006), 644–651.
    [5] J. G. Lu, Chaotic dynamics and synchronization of fractional-order Arneodo's systems, Chaos Sol. Fract., 26 (2005), 1125–1133. doi: 10.1016/j.chaos.2005.02.023
    [6] J. G. Lu, G. Chen, A note on the fractional-order Chen system, Chaos Sol. Fract., 27 (2006), 685–688. doi: 10.1016/j.chaos.2005.04.037
    [7] S. Zhang, The existence of a positive solution for nonlinear fractional differential equation, J. Math. Anal. Appl., 252 (2000), 804–812. doi: 10.1006/jmaa.2000.7123
    [8] S. Zhang, Existence of positive solutions for some class of nonlinear fractional equation, J. Math. Anal. Appl., 278 (2003), 136–148. doi: 10.1016/S0022-247X(02)00583-8
    [9] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci., 14 (2009), 674–684. doi: 10.1016/j.cnsns.2007.09.014
    [10] M. Al-Mdallal, M. I. Syam, M. N. Anwar, A collocation-shooting method for solving fractional boundary value problems, Commun. Nonlinear Sci., 15 (2010), 3814–3822. doi: 10.1016/j.cnsns.2010.01.020
    [11] H. Jafari, V. Daftardar-Gejji, Positive solution of nonlinear fractional boundary value problems using Adomin decomposition method, Appl. Math. Comput., 180 (2006), 700–706.
    [12] B. Ahmad, J. J. Nieto, Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations, Abst. Appl. Anal., 2009 (2009), 1–10.
    [13] M. Belmekki, J. JNieto, R. Rodriguez-Lopez, Existence of periodic solution for a nonlinear fractional differential equation, Bound. Value Probl., 2009 (2009), 1–18.
    [14] C. P. Li, F. R. Zhang, A survey on the stability of fractional differential equations, Eur. Phys. J. Spec. Top, 193 (2011), 27–47. doi: 10.1140/epjst/e2011-01379-1
    [15] D. Baleanu, O. G. Mustafa, R. P. Agarwal, On the solution set for a class of sequential fractional differential equations, J. Phys. A Math. Theor., 2010 (2010), 1–11.
    [16] B. C. Dhage, Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations, Differ. Equ. Appl., 2 (2010), 465–486.
    [17] B. C. Dhage, Nonlinear quadratic first order functional integro-differential equations with periodic boundary conditions, Dyn. Syst. Appl., 18 (2009), 303–322.
    [18] B. C. Dhage, B. D. Karande, First order integro-differential equations in Banach algebras involving Caratheodory and discontinuous nonlinearities, Electron. J. Qual. Theory Differ. Equ., 21 (2005), 1–16.
    [19] B. C. Dhage, B. D. O'Regan, A fixed point theorem in Banach algebras with applications to functional integral equations, Funct. Differ. Equ., 7 (2000), 259–267.
    [20] B. C. Dhage, N. S. Jadhav, Basic results in the theory of hybrid differential equations with linear perturbations of second type, Tamkang J. Math., 44 (2013), 171–186.
    [21] H. Lu, S. Sun, D. Yang, H. Teng, Theory of fractional hybrid differential equations with linear perturbations of second type, Bound. Value Probl., 2013 (2013), 1–16. doi: 10.1186/1687-2770-2013-1
    [22] C. Bai, J. Fang, The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations, Appl. Math. Comput., 150 (2004), 611–621.
    [23] Y. Chen, H. An, Numerical solutions of coupled Burgers equations with time and space fractional derivatives, Appl. Math. Comput., 200 (2008), 87–95.
    [24] V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math., 220 (2008), 215–225. doi: 10.1016/j.cam.2007.08.011
    [25] V. D. Gejji, Positive solutions of a system of non-autonomous fractional differential equations, J. Math. Anal. Appl., 302 (2005), 56–64. doi: 10.1016/j.jmaa.2004.08.007
    [26] M. P. Lazarevic, Finite time stability analysis of PD$\alpha $ fractional control of robotic time-delay systems, Mech. Res. Commun., 33 (2006), 269–279. doi: 10.1016/j.mechrescom.2005.08.010
    [27] B. Ahmad, A. Alsaedi, Existence and uniqueness of solutions for coupled systems of higher-order nonlinear fractional differential equations, Fixed Point Theory Appl., 2010 (2010), 1–17.
    [28] R. S. Adigüzel, Ü. Aksoy, E. Karapinar, I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Methods Appl. Sci., (2020), 6652.
    [29] H. Afshari, E. Karapinar, A discussion on the existence of positive solutions of the boundary value problems via $\psi -$Hilfer fractional derivative on $b-$metric spaces, Adv. Differ. Equations, 2020 (2020), 616. doi: 10.1186/s13662-020-03076-z
    [30] H. Afshari, S. Kalantari, E. Karapinar, Solution of fractional differential equations via coupled fixed point, Electron. J. Differ. Equations, 286 (2015), 1–12.
    [31] X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 22 (2009), 64–69. doi: 10.1016/j.aml.2008.03.001
    [32] V. Gafiychuk, B. Datsko, V. Meleshko, D. Blackmore, Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations, Chaos Solitons Fractals, 41 (2009), 1095–1104. doi: 10.1016/j.chaos.2008.04.039
    [33] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [34] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
    [35] V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 4889–4897. doi: 10.1016/j.na.2011.03.032
    [36] M. Borcut, V. Berinde, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comput., 218 (2012), 5929–5936.
    [37] B. S. Choudhury, E. Karapinar, A. Kundu, Tripled coincidence point theorems for nonlinear contractions in partially ordered metric spaces, Int. J. Math. Math. Sci., 2012 (2012), 1–15.
    [38] Z. Mustafa, J. R. Roshan, V. Parvaneh, Existence of a tripled coincidence point in ordered $G_{b}-$metric spaces and applications to a system of integral equations, J. Inequalities Appl., 2013 (2013), 453. doi: 10.1186/1029-242X-2013-453
    [39] H. Aydi, E. Karapinar, M. Postolache, Tripled coincidence point theorems for weak $\varphi -$contractions in partially ordered metric spaces, Fixed Point Theory Appl., 2012 (2012), 44. doi: 10.1186/1687-1812-2012-44
    [40] H. A. Hammad, M. De la Sen, A technique of tripled coincidence points for solving a system of nonlinear integral equations in POCML spaces, J. Ineq. Appl., 2020 (2020), 211.
    [41] H. A. Hammad, M. De la Sen, A tripled fixed point technique for solving a tripled-system of integral equations and Markov process in CCbMS, Adv. Differ. Equations, 2020 (2020), 567.
    [42] B. S. Choudhury, E. Karapınar, A. Kundu, Tripled coincidence point theorems for nonlinear contractions in partially ordered metric spaces, Int. J. Math. Math. Sci., 2012 (2012), 1–15.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1588) PDF downloads(80) Cited by(22)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog