Research article

Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras

  • Received: 05 August 2022 Revised: 11 December 2022 Accepted: 12 December 2022 Published: 29 December 2022
  • MSC : 46K15, 47B49

  • In this paper, we investigate Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras over the field of real numbers. We prove that every Jordan semi-triple derivation on generalized quaternion algebras over the field of real numbers is a derivation. Also, we show that every left (resp, right) Jordan centralizer on generalized quaternion algebras over the field of real numbers is a left (resp, right) centralizer.

    Citation: Ai-qun Ma, Lin Chen, Zijie Qin. Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras[J]. AIMS Mathematics, 2023, 8(3): 6026-6035. doi: 10.3934/math.2023304

    Related Papers:

  • In this paper, we investigate Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras over the field of real numbers. We prove that every Jordan semi-triple derivation on generalized quaternion algebras over the field of real numbers is a derivation. Also, we show that every left (resp, right) Jordan centralizer on generalized quaternion algebras over the field of real numbers is a left (resp, right) centralizer.



    加载中


    [1] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin., 32 (1991), 609–614.
    [2] J. Vukman, I. Kosi-Ulbl, Centralisers on rings and algebras, B. Aust. Math. Soc., 71 (2005), 225–234. https://doi.org/10.1017/S000497270003820X doi: 10.1017/S000497270003820X
    [3] W. Du, J. Zhang, Jordan semi-triple derivable maps of matrix algebras, Acta. Math. Sinica., 51 (2008), 571–578. https://doi.org/10.3321/j.issn:0583-1431.2008.01.016 doi: 10.3321/j.issn:0583-1431.2008.01.016
    [4] L. Chen L, J. Zhang, $*$-Jordan semi-triple derivable mappings, Indian J. Pure Appl. Math., 51 (2020), 825–837. https://doi.org/10.1007/s13226-020-0434-4 doi: 10.1007/s13226-020-0434-4
    [5] W. R. Hamilton, Theory of conjugate functions, or algebraic couples; with a preliminary and elementary essay on algebra as the science of pure time, Trans. R. Irish Acad., 17 (1835), 293–422.
    [6] Z. Kurt, Ö. N. Gerek, A. Bilge, K. Özkan, A graph-based recommendation algorithm on quaternion algebra, SN Comput. Sci., 3 (2022), 299. https://doi.org/10.1007/s42979-022-01171-4 doi: 10.1007/s42979-022-01171-4
    [7] A. M. Grigoryan, S. S. Agaian, Commutative quaternion algebra and DSP fundamental properties: Quaternion convolution and Fourier transform, Signal Process., 196 (2022), 108533. https://doi.org/10.1016/j.sigpro.2022.108533 doi: 10.1016/j.sigpro.2022.108533
    [8] J. Voight, The arithmetic of quaternion algebras, 2014.
    [9] A. Bouhlal, N. Safouane, A. Achak, R. Daher, Wavelet transform of Dini Lipschitz functions on the quaternion algebra, Adv. Appl. Clifford Algebras, 31 (2021), 8. https://doi.org/10.1007/s00006-020-01112-5 doi: 10.1007/s00006-020-01112-5
    [10] S. Malev, The images of noncommutative polynomials evaluated on the quaternion algebra, J. Algebra Appl., 20 (2021), 2150074. https://doi.org/10.1142/S0219498821500742 doi: 10.1142/S0219498821500742
    [11] T. Csahók, P. Kutas, M. Montessinos, G. Zábrádi, Explicit isomorphisms of quaternion algebras over quadratic global fields, Res. Number Theory, 8 (2022), 77. https://doi.org/10.1007/s40993-022-00380-3 doi: 10.1007/s40993-022-00380-3
    [12] H. Boylan, N. P. Skoruppa, H. Zhou, Counting zeros in quaternion algebras using Jacobi forms, Trans. Amer. Math. Soc., 371 (2019), 6487–6509. https://doi.org/10.1090/tran/7575 doi: 10.1090/tran/7575
    [13] L. Rodman, Topics in quaternion linear algebra, In: Topics in quaternion linear algebra, Princeton: Princeton University Press, 2014. https://doi.org/10.23943/princeton/9780691161853.001.0001
    [14] Z. Jia, M. K. Ng, G. J. Song, Robust quaternion matrix completion with applications to image inpainting, Numer. Linear Algebra Appl., 26 (2019), e2245. https://doi.org/10.1002/nla.2245 doi: 10.1002/nla.2245
    [15] Z. H. He, M. Wang, X. Liu, On the general solutions to some systems of quaternion matrix equations, RACSAM, 114 (2020), 95. https://doi.org/10.1007/s13398-020-00826-2 doi: 10.1007/s13398-020-00826-2
    [16] L. S. Liu, Q. W. Wang, J. F. Chen, Y. Z. Xie, An exact solution to a quaternion matrix equation with an application, Symmetry, 14 (2022), 375. https://doi.org/10.3390/sym14020375 doi: 10.3390/sym14020375
    [17] A. B. Mamagani, M. Jafari, On properties of generalized quaternion algebra, J. Nov. Appl. Sci., 2 (2013), 683–689.
    [18] H. Ghahramani, M. N. Ghosseiriand, L. H. Zadeh, Generalized derivations and generalized Jordan derivations of quaternion rings, Iran. J. Sci. Technol. Trans. Sci., 45 (2021), 305–308. https://doi.org/10.1007/s40995-020-01046-4 doi: 10.1007/s40995-020-01046-4
    [19] H. Ghahramani, M. N. Ghosseiriand, L. H. Zadeh, On the Lie derivations and generalized Lie derivations of quaternion rings, Commun. Algebra, 47 (2019), 1215–1221. https://doi.org/10.1080/00927872.2018.1501577 doi: 10.1080/00927872.2018.1501577
    [20] E. Kizil E, Y. Alagöz, Derivations of generalized quaternion algebra, Turk. J. Math., 43 (2019), 2649–2657. https://doi.org/10.3906/mat-1905-86 doi: 10.3906/mat-1905-86
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1337) PDF downloads(94) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog