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Abstract: This paper revisits the topic of Pythagorean triples with a different perspective. While
several methods have been explored to generate Pythagorean triples, none of them is complete in
terms of generating all the triples without repetitions. Indeed, many existing methods concentrate on
generating primitive triples but do not cater to non-primitives. By contrast, the approach presented
in this paper to parameterise the Pythagorean triples generates all of the triples in a unique way, i.e.,
without repetitions. We also explore the relation of this new parameterisation with the Pythagorean
family of odd triples and with the Platonic family of even triples.
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1. Introduction

The Pythogorean theorem states as follows: For any right-angled triangle, the square of the
hypotenuse c equals the sum of squares of/on the two (shorter) legs lengths a and b, which is written
as a2 + b2 = c2 and is among the Diophantine equations [1]. Several different proofs have been given
for the Pythagorean theorem, see e.g., [2–4]. It was also shown that the converse of the theorem to be
true. Indeed, Euclid (C. 300 B.C.) proved that a triangle with sides a, b and c that satisfies the
equation a2 + b2 = c2 is necessarily a right-angled triangle [5]. The generalisation of Pythagorean
theorem by Dijkstra and the shorter proof by Bhaskara are among the hundreds of proofs reported in
the literature so far [6].

In the case where a, b and c are all natural numbers different from zero, the triple (a, b, c) is called a
Pythagorean triple. Therefore, finding Pythagorean triples is equivalent to finding right triangles with
integral sides. The problem for rational numbers is clearly the same up to a scale factor. The notion
of Pythagorean triple, and its relation to the Pythagorean theorem, is a cornerstone of several areas
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of pure mathematics, including number theory, elementary and algebraic geometry, as well as applied
mathematics. In particular, a new stream of literature flourished in the past decade on the topic of
generation of Pythagorean triples in view of its relevance in areas such as cryptography and random
number generation algorithms. Given the large number of contributions in these areas, it would be
impossible to quote even only a fraction of the relevant references, and we consequently direct the
interested reader to the monographs [4] and [7], which provide surveys of the extensive literature in
these areas, and to the papers [8–10] along with the references cited therein.

The formula by Euclid forms the basis for generating Pythagorean triples from an arbitrary pair of
non-zero natural numbers u, v. According to Euclid’s formula, all primitive Pythagorean triples (a, b, c)
in which b is even are obtained from the following equations

a = u2 − v2, b = 2 u v, c = u2 + v2,

where u > v, and u and v being all pairs of relatively prime (co-prime) numbers. The important
property to note is that one of the numbers u, v is even and the other is odd. In addition, each primitive
Pythagorean triple (a, b, c) where b is even is obtained in this way only once.

Thomas Harriot, an English mathematician and scientist, was one of the pioneers to suggest that
Pythagorean triples exist in series [11]. Many of the classical formulae/parameterisations available in
the literature are known to generate all primitive triples but they do not generate all possible triples,
in particular the non-primitive triples [12, 13]. More recent works have explored methods to generate
both primitive and non-primitive triples [14–16]. Some properties of a Pythagorean triangle such as the
difference between the length of the hypotenuse and one side of the triangle being distinctly dependent
on the length of the other side have been used to generate them. In [17], a relation is presented between
the rational points on a circle and the Pythagorean triples. In [18], a parameterisation is derived for
all perfect parallelograms, and as a special case establishes how the perfect rectangles correspond to
Pythagorean triples. In [19], a representation is provided of Fibonacci numbers. In comparison to
these, in [20], a different enumeration is used, which is based on two simple geometric parameters,
called the height and the excess, to discuss some known results about the set of primitive Pythagorean
triples. On the other hand, in [21], the perfect cuboid problem is related to a parametric solution using
Pythagorean triples. However, no general form in terms of a series to characterise Pythagorean triples
was given. This gap in literature forms the prime motivation of this paper.

We propose a new method to express Pythagorean triples in terms of odd and even series, which
comprise the triangles in which the difference between the hypotenuse and a side is odd and/or even.
With Euclid’s formula, the significance of odd and even sides has been described in [8, Lemma 1]. In
this paper, a complete formula for the parameterisation of the Pythagorean triples without repetitions
in terms of odd and even series is proposed and discussed. Further, the generation of all Pythagorean
triples (primitive as well as non-primitive) with this parameterisation is established in this paper.
While it may be considered that there are many established methods for the generation of all
Pythagorean triples, the more interesting and challenging problem is in developing a parameterization
that can generate all the triples (not only the primitive ones) without repetitions. This constitutes the
key contribution of the paper.
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2. Theory and methods

Several properties of Pythagorean triples have been studied over many centuries. Nevertheless, not
all fundamental mathematical aspects have been fully explored. Modular ring theory and number
theory have been used in the literature to extend several existing methods to generate families of
Pythagorean triples [22, 23]. We begin with the fundamental definition of a generic Pythagorean
triple, which is denoted as the triple

(a, b, c) (2.1)

where a, b, c ∈ N\{0}, with c > max{a, b}, i.e., a and b denote the sides of a right triangle, and c denotes
the length of the hypothenuse. The set of all Pythagorean triples is denoted by P. A Pythagorean triple
(a, b, c) is said to be primitive if a, b and c are relatively prime (co-prime). We denote by P0 the set
of all primitive Pythagorean triples. Next, we use the Euclid’s formula for parameterising a family of
Pythagorean triples given an arbitrary pair of natural numbers u, v ∈ N \ {0} with u > v.

Lemma 1. [Euclid’s Formula]
For any u, v ∈ N \ {0} with u > v, (

u2 − v2, 2 u v, u2 + v2) (2.2)

is a Pythagorean triple.

We refer to the Pythagorean triples generated by (2.2) as Euclidean triples. Let us denote the set of
such triples by E. It is known that Euclid’s formula generates all primitive Pythagorean triples, and we
establish a relationship between Euclidean triples and Pythagorean triples with the following important
proposition, see [4].

Proposition 1. There holds P ⊃ E ⊃ P0. Further, a Euclidean triple generated with (2.2) is primitive
if and only if u and v are relatively prime (co-prime) and u − v is odd.

The inclusion of E ⊃ P0 in Proposition 1 shows that Euclid’s formula generates all primitive
Pythagorean triples. We observe that such inclusion is strict as it can be seen that (2.2) generates also
a subset of P \ P0. Let us consider the following case when the triple, (a, b, c) is not primitive:

“If both u and v are odd, then a = u2 − v2, b = 2 u v and c = u2 + v2 are even”.
To illustrate, consider u = 6 and v = 3, which are not co-prime, and u − v is odd. In this case the

corresponding Euclidean triple is (27, 36, 45), which is not primitive. In addition, since the inclusion
P ⊃ E in Proposition 1 is also strict, E is a proper subset of the set P of all Pythagorean triples.
Indeed, while it is true that every primitive Pythagorean triple is an element of E, some non-primitive
Pythagorean triples are not in E. For example, for the non-primitive Pythagorean triple (9, 12, 15) ∈ P\
P0, there exists no set of values of u, v ∈ N\{0} with u > v such that

(
u2−v2, 2 u v, u2 +v2) = (9, 12, 15).

It is established in [4] that if (a, b, c) is a primitive Pythagorean triple, then exactly one between a,
b is odd, and c is odd. In addition, we observe that the converse is not necessarily true. In other words,
there are Pythagorean triples that are not primitive for which one value between a and b is odd and c is
odd, as can be seen from the Pythagorean triple (27, 36, 45).

The above observations form a key motivation for this study. In this paper, we explore the subset of
the set of Euclidean triples, that we denote by the symbol C, which consists of triples with the property
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that exactly one value between a and b is odd and c is odd. We can easily establish that exactly one
between a and b is odd if and only if exactly one between u and v is odd, so that

C = {(a, b, c) ∈ E | a − b and c are odd}
=

{(
u2 − v2, 2 u v, u2 + v2) | u, v ∈ N \ {0}, u > v, u − v is odd

}
.

Following Proposition 1, we arrive at the chain of inclusions

P ⊃ E ⊃ C ⊃ P0.

A straightforward assumption is that the order of the elements of a triple in C is the one induced
by the order imposed in E. Thus, a is odd and b is even for any (a, b, c) ∈ C. Therefore, for every
(a, b, c) ∈ C, the difference c − b is odd and the difference c − a is even.

Overall, we have established that with the standard Euclidean formula, it is not possible to generate
all the Pythagorean triples and some interesting odd-even properties have been identified.

3. Proposed method to generate all Pythagorean triples

We observe that many methods that have been used to generate the Pythagorean triples have
adopted different representations of the numbers that were generated. The representation of Fibonacci
numbers [19], the geometrical representation of Dicksons method [1] and other forms of
parametrisation of Pythagorean triples [22–24] are commonly adopted in the literature. However, they
do not provide a unique expression for finding all triples. In this section, we propose a new
parametrisation of Pythagorean triples which generates all triples, both primitive and non-primitive, in
a simple manner. The following is the key to obtain a parameterisation of the set of Pythagorean
triples in a convenient form [15]. We establish some preliminary results on the intersection of the sets
of Pythagorean and Platonic right angle triangles [15] to the end of determining all primitive and
non-primitive Pythagorean triples in the following section.

Lemma 2. For any Pythagorean triple (a, b, c) ∈ C

• there exists m ∈ N \ {0} such that c − b = (2 m − 1)2;
• there exists n ∈ N \ {0} such that c − a = 2 n2.

Conversely, given m, n ∈ N \ {0}, there exists (a, b, c) ∈ C such that c − b = (2 m − 1)2 and c − a = 2 n2.

Proof. Firstly, it is shown that given (a, b, c) ∈ C, the difference c − b can be written as (2 m − 1)2 for
some m ∈ N \ {0}. From Lemma 1 and the definition of C, there exist u, v ∈ N \ {0} with u > v and u− v
odd such that a = u2 − v2, b = 2 u v and c = u2 + v2. We can write

c − b = (u2 + v2) − 2 u v = (u − v)2.

Thus, c − b can be written as (2 m − 1)2 for some m ∈ N \ {0} if and only if u − v is odd, which is true.
Secondly, given (a, b, c) ∈ C, the difference c−a can be shown to be equal to 2 n2 for some n ∈ N\{0}.

Indeed, using again Lemma 1, it is found that

c − a = (u2 + v2) − (u2 + v2) = 2 v2.
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Then, n = v is a solution. To prove the converse, in view of Lemma 1, it suffices to prove that the
equations

u2 + v2 − 2 u v = (2 m − 1)2,

u2 + v2 − (u2 − v2) = 2 n2,

can be solved in u, v ∈ N \ {0} with u > v, and where u − v is odd. It is straightforward to verify that
u = n + 2 m − 1 and v = n is a solution. �

Loosely, in view of Lemma 2, for every Pythagorean triple (a, b, c) ∈ C, the difference c − b is
constrained to be an odd integer in {1, 9, 25, 49, ....}. Similarly, the difference c − a is constrained
to be equal to one of the even numbers in {2, 8, 18, 32, ....}. This simple consideration enables the
introduction of the following definition.

Definition 1. For every m, n ∈ N \ {0}, the series of odd Pythagorean triples of C is defined as

odd(m)
def
=

{
(a, b, c) ∈ C | c − b = (2 m − 1)2

}
and the series of even Pythagorean triples of C is defined as

even(n)
def
=

{
(a, b, c) ∈ C | c − a = 2 n2

}
.

For example, (3, 4, 5), (5, 12, 13), (7, 24, 25) ∈ odd(1) and (3, 4, 5), (15, 8, 17), (35, 12, 37) ∈ even(1).
As a consequence of Lemma 2, the following results hold.

Theorem 1. The following facts hold true:

1. There holds
C =

⋃
m∈N\{0}

odd(m) =
⋃

n∈N\{0}

even(n).

2. For any m1,m2 ∈ N \ {0} with m1 , m2, there holds odd(m1) ∩ odd(m2) = ∅. Likewise, for any
n1, n2 ∈ N \ {0} with n1 , n2, there holds even(n1) ∩ even(n2) = ∅.

3. For every (a, b, c) ∈ C there exists n,m ∈ N\{0} such that (a, b, c) ∈ odd(m)∩even(n). Conversely,
for every n,m ∈ N\{0} the intersection odd(m)∩even(n) ∈ C contains a single Pythagorean triple.

4. Let m, n ∈ N \ {0}. Then, the triple (a, b, c) ∈ C such that c − b = (2 m − 1)2 and c − a = 2 n2 can
be written in a unique way as the Diophantine equations in m, n

a = −2 n + 4 n m + 4 m2 − 4 m + 1, (3.1)
b = 2 n2 − 2 n + 4 n m, (3.2)
c = 2 n2 − 2 n + 4 n m + 4 m2 − 4 m + 1. (3.3)

Proof. The points 1-3 are a simple consequence of Lemma 2. We only need to prove the last point.
From the last part of the proof of Lemma 2 it is found that

a = (n + 2 m − 1)2 − n2,

b = 2 (n + 2 m − 1) n,
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c = (n + 2 m − 1)2 + n2,

which immediately lead to (3.1-3.3). It is now shown that (a, b, c) ∈ C is written in a unique way as a
function of n,m ∈ N \ {0}. To this end, using (3.1) yields

n =
a − (2 m − 1)2

2 (2 m − 1)
, (3.4)

which, once substituted in (3.2), gives the biquadratic equation (2 m−1)4 +2 b (2 m−1)−a2 = 0, which
is easily seen to admit only one positive solution

m =
1 +
√

c − b
2

.

Replacing the latter into (3.4) yields

n =
a + b − c

2
√

c − b
. (3.5)

This shows that given (a, b, c) ∈ C, the values of the natural numbers m and n such that (3.1-3.3) hold
are uniquely determined. �

Remark 1. Notice that (3.1-3.3) can be written as
a
b
c

 =


0 1 1
1 1 0
1 1 1




2 n2

2 n (2 m − 1)
(2 m − 1)2

 . (3.6)

Consider the right triangle in Figure 1.

A

BaC

b
c

d

f

e

Figure 1. Geometric interpretation of m and n.

Let a = B C, b = A C and c = A B. Suppose d = c − b is odd and e = c − a is even. Then, defining
f = a − d, the three relations

a = f + d
b = e + f
c = e + d + f

⇔


a
b
c

 =


0 1 1
1 1 0
1 1 1




e
f
d


are obtained. From the non-singularity of

[ 0 1 1
1 1 0
1 1 1

]
it follows that e = 2 n2 and d = (2 m − 1)2.
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Remark 2. The Pythagorean triples obtained in this way are all such that c is odd. However, if m is
allowed to also take the values 1/2, 3/2, 5/2...., then a, b, c are still in N \ {0} and (a, b, c) is still a
Pythagorean triple, but a, b and c are all even. This means that C comprises all the triples of E except
for those for which a, b, c are even. Stated differently, denotingN1/2

def
= N∪

{
p + 1

2 | p ∈ N
}
, and defining

Ĉ
def
=

⋃
m∈N1/2\{0}

odd(m),

there holds Ĉ = E. Indeed, defining s = 2 m, the equations in the proof of Theorem 1 become

a = (n + s − 1)2 − n2, b = 2 (n + s − 1) n, c = (n + s − 1)2 + n2,

so that by setting u = n + s − 1 and v = n it is seen that (a, b, c) ∈ E.

As a result of Lemma 2 and Theorem 1, every Pythagorean triple (a, b, c) in C can be expressed in
a unique way as a function p of m and n, i.e., we can write

(a, b, c) = p(m, n).

In view of the considerations above, all triples in C can be represented in terms of m and n into a lattice
as shown in Figure 2.

(3, 4, 5) (15, 8, 17) (35, 12, 37) (63, 16, 65) (99, 20, 101)

(5, 12, 13) (21, 20, 29) (45, 28, 53) (77, 36, 85) (117, 44, 125)

(7, 24, 25) (27, 36, 45) (55, 48, 73) (91, 60, 109) (135, 72, 153)

(9, 40, 41) (33, 56, 65) (65, 72, 97) (105, 88, 137) (153, 104, 185)

(11, 60, 61) (39, 80, 89) (75, 100, 125) (119, 120, 169)(171, 140, 221)

m

n

n = 2 m − 1

1 2 3 4 5

1

2

3

4

5

odd(1) odd(2) odd(3) odd(4) odd(5)

even(1)

even(2)

even(3)

even(4)

even(5)

Figure 2. Lattice of Pythagorean triples in C.

From Figure 2, it is clear that C also contains non-primitive triples. For example, all triples lying on
the line n = 2 m− 1 can be expressed as p2 (3, 4, 5) where p ∈ N is odd. More in general, the following
result holds.
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Theorem 2. Let (a, b, c) ∈ C and let m, n ∈ N \ {0} such that (a, b, c) = p(m, n). Then, (a, b, c) is
primitive if and only if n and 2 m − 1 are co-prime.

Proof. Let µ def
= 2 m − 1. Writing (3.1-3.3) as a function of n and µ yields

a = µ (2 n + µ), (3.7)
b = 2 n (n + µ), (3.8)
c = 2 n2 + µ (2 n + µ). (3.9)

Firstly, it is shown that if n and µ have a common factor, (a, b, c) is not primitive. Let us write n = q ñ
and µ = q µ̃, where q, ñ, µ̃ ∈ N \ {0}. Substituting these expressions into (3.7-3.9) yields

a = 2 q2 µ̃ (2 ñ + µ̃),
b = 2 q2 ñ (ñ + µ̃),
c = q2 (2 ñ2 + 2 ñ µ̃ + µ̃2),

which show that (a, b, c) ∈ C \ P0.
It is now shown that if (a, b, c) is not primitive in C, then n and µ are not co-prime. If (a, b, c) is not

primitive, it can be written as (a, b, c) = k (α, β, γ) where k ∈ N \ {0} and (α, β, γ) ∈ P0. Therefore,
there exist n̂, µ̂ ∈ N \ {0} such that (α, β, γ) = p(n̂, µ̂), which, by taking (3.7-3.9) into account, gives

µ (2 n + µ) = k µ̂ (2 n̂ + µ̂),
2 n (n + µ) = 2 k n̂ (n̂ + µ̂),

2 n2 + µ (2 n + µ) = 2 k n̂2 + µ̂ k (2 n̂ + µ̂).

The first and the third equations give k = n2/n̂2, which, once substituted into the second equation,
yields

`
def
=

n
n̂

=
µ

µ̂
.

Notice that ` ∈ N and `2 = k. Thus, ` is a common factor of n and µ, which are therefore not co-
prime. �

Remark 3. From the considerations in Remark 2, the set of Pythagorean triples in Ĉ = E can be
represented as the lattice in Figure 3.

Remark 4. Particularly important special cases of the parameterisation given in Theorem 1 are:

1. the so-called Pythagorean family of odd triples (2 n + 1, 2 n2 + 2 n, 2 n2 + 2 n + 1), which can be
obtained as p(1, n) = odd(1) = {(3, 4, 5), (5, 12, 13), (7, 24, 25) . . .}, i.e.,

p(1, n) =

(a, b, c) ∈ N3 :


a
b
c

 =


0 1 1
1 1 0
1 1 1




2 n2

2 n
1

 for some n ∈ N \ {0}

 ,
which follows also from (3.6) by setting m = 1;
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(3, 4, 5) (8, 6, 10) (15, 8, 17) (24, 10, 26) (35, 12, 37)

(5, 12, 13) (12, 16, 20) (21, 20, 29) (32, 24, 40) (45, 28, 53)

(7, 24, 25) (16, 30, 34) (27, 36, 45) (40, 42, 58) (55, 48, 73)

(9, 40, 41) (20, 48, 52) (33, 56, 65) (48, 64, 80) (65, 72, 97)

(11, 60, 61) (24, 70, 74) (39, 80, 89) (56, 90, 106) (75, 100, 125)

µ

n

1 2 3 4 5

1

2

3

4

5

Figure 3. Lattice of Pythagorean triples in Ĉ = E.

2. the so-called Platonic family of even triples (4 m2 − 1, 4 m, 4 m2 + 1), which can be obtained as
p(m, 1) = even(1) = {(3, 4, 5), (15, 8, 17), (35, 12, 37) . . .}, i.e.,

p(m, 1) =

(a, b, c) ∈ N3 :


a
b
c

 =


0 1 1
1 1 0
1 1 1




2
2 (2 m − 1)
(2 m − 1)2

 for some m ∈ N \ {0}


which follows from (3.6) with n = 1.

The only Pythagorean triple that simultaneously belongs to the set of Pythagorean family of triples
and to the Platonic family of triples is obviously the Pythagorean triple (3, 4, 5). There holds p(1, 1) =

(3, 4, 5).
From the above parameterisation, we observe that to generate the Pythagorean triples, the Platonic

method proceeds from even numbers and the Pythoagorian method proceeds from odd numbers. In
simple terms, it takes a given even number as one of the sides about the right angle triangle, divides
it by two and squares the half, then by adding one to the square gets the subtending side, and by
subtracting one from the square gets the other side about the right angle and thus it has constructed the
same triangle that was obtained by the Pythagorean method.

We combine Pythagorean and Platonic families of triples to obtain the following expression, which
generates all the Pythagorean triples:

p(m, n) =

(a, b, c) ∈ N3 :


a
b
c

 =


0 1 1
1 1 0
1 1 1




2 n2

2n (2 m − 1)
(2 m − 1)2

 for some n,m ∈ N \ {0}

 .
From this expression, we obtain the following equations:

e = 2n2, d = (2m − 1)2, f = 2n(2m − 1)2

a = d + f = 4mn − 2n + 4m2 − 4m + 1
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b = e + f = 2n2 + 4mn − 2n

c = d + e + f = 2n2 + 4mn − 2n + 4m2 − 4m + 1.

4. Concluding remarks

An important body of works has been produced, over the centuries, around the properties of
Pythagorean triples. In more recent times, a renewed interest in the generation of Pythagorean triples
has been motivated by their various real-life applications, including (but not limited to) cryptography
and information security. The set of triples that can be generated using the classical Euclid’s formula
does not include the non-primitive Pythagorean triples (a, b, c) where a, b and c are all even. While
several methods have been explored to find alternatives to characterise and generate Pythagorean
triples, the majority of these focuses on primitive triples only. This paper has presented a new
approach for generating all Pythagorean triples, both primitives and non-primitives. A new
parameterisation of Pythagorean triples has been introduced in the general form of odd and even
series.

New properties of co-prime right angle triangles in the Euclidean field have been established by
exploring the intersection of the Pythagorean and Platonic families for generating all Pythagorean
triples. The parameterisation presented in this paper has already been successfully exploited to obtain
faster computations of the golden ratio and silver ratio, see [26, 27]. Future work entails exploring
further applications to areas such as data encryption and decryption [28, 29].
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