Citation: Jean-Paul Chehab, Denys Dutykh. On time relaxed schemes and formulations for dispersive wave equations[J]. AIMS Mathematics, 2019, 4(2): 254-278. doi: 10.3934/math.2019.2.254
[1] | D. C. Antonopoulos, V. A. Dougalis and D. E. Mitsotakis, Galerkin approximations of the periodic solutions of Boussinesq systems, Bulletin of Greek Math. Soc., 57 (2010), 13-30. |
[2] | M. Antuono, V. Y. Liapidevskii and M. Brocchini, Dispersive Nonlinear Shallow-Water Equations, Stud. Appl. Math., 122 (2009), 1-28. doi: 10.1111/j.1467-9590.2008.00422.x |
[3] | T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. T. R. Soc. A, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032 |
[4] | F. Benkhaldoun and M. Seaïd, New finite-volume relaxation methods for the third-order differential equations, Commun. Comput. Phys., 4 (2008), 820-837. |
[5] | J. L. Bona, V. A. Dougalis and D. E. Mitsotakis, Numerical solution of KdV-KdV systems of Boussinesq equations: I. The numerical scheme and generalized solitary waves, Math. Comput. Simulat., 74 (2007), 214-228. doi: 10.1016/j.matcom.2006.10.004 |
[6] | P. Bonneton, F. Chazel, D. Lannes, et al. A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, J. Comput. Phys., 230 (2011), 1479-1498. doi: 10.1016/j.jcp.2010.11.015 |
[7] | J. V. Boussinesq, Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants à l'Acad. des Sci. Inst. Nat. France, 1877. |
[8] | H. Chen, M. Chen and N. Nguyen, Cnoidal Wave Solutions to Boussinesq Systems, Nonlinearity, 20 (2007), 1443-1461. doi: 10.1088/0951-7715/20/6/007 |
[9] | R. Cienfuegos, E. Barthélémy and P. Bonneton, A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I: Model development and analysis, Int. J. Numer. Meth. Fl., 51 (2006), 1217-1253. doi: 10.1002/fld.1141 |
[10] | D. Clamond, Cnoidal-type surface waves in deep water, J. Fluid Mech., 489 (2003), 101-120. doi: 10.1017/S0022112003005111 |
[11] | A. Duran, D. Dutykh and D. Mitsotakis, On the Galilean Invariance of Some Nonlinear Dispersive Wave Equations, Stud. Appl. Math., 131 (2013), 359-388. doi: 10.1111/sapm.12015 |
[12] | A. Durán, D. Dutykh and D. Mitsotakis, Peregrine's System Revisited. In N. Abcha, E. N. Pelinovsky, and I. Mutabazi, editors, Nonlinear Waves and Pattern Dynamics, pp. 3-43, Springer International Publishing, Cham, 2018. |
[13] | D. Dutykh, D. Clamond, P. Milewski, et al. Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations, Eur. J. Appl. Math., 24 (2013), 761-787. doi: 10.1017/S0956792513000168 |
[14] | D. Dutykh, T. Katsaounis and D. Mitsotakis, Finite volume schemes for dispersive wave propagation and runup, J. Comput. Phys., 230 (2011), 3035-3061. doi: 10.1016/j.jcp.2011.01.003 |
[15] | D. Dutykh, T. Katsaounis and D. Mitsotakis, Finite volume methods for unidirectional dispersive wave models, Int. J. Numer. Meth. Fl., 71 (2013), 717-736. doi: 10.1002/fld.3681 |
[16] | C. Eskilsson and S. J. Sherwin, Discontinuous Galerkin Spectral/hp Element Modelling of Dispersive Shallow Water Systems, J. Sci. Comput., 22 (2005), 269-288. |
[17] | F. Fedele and D. Dutykh, Vortexons in axisymmetric Poiseuille pipe flows, EPL, 101 (2013), 34003. |
[18] | R. Grimshaw, Internal Solitary Waves. In R. Grimshaw, editor, Environmental Stratified Flows, pp. 1-27, Springer US, 2002. |
[19] | M. S. Ismail, A finite difference method for Korteweg-de Vries like equation with nonlinear dispersion, Int. J. Comput. Math., 74 (2000), 185-193. doi: 10.1080/00207160008804933 |
[20] | R. S. Johnson, A modern introduction to the mathematical theory of water waves, Cambridge University Press, Cambridge, 1997. |
[21] | M. Kameyama, A. Kageyama and T. Sato, Multigrid iterative algorithm using pseudo-compressibility for three-dimensional mantle convection with strongly variable viscosity, J. Comput. Phys, 206 (2005), 162-181. doi: 10.1016/j.jcp.2004.11.030 |
[22] | D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag., 39 (1895), 422-443. doi: 10.1080/14786449508620739 |
[23] | S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16-42. doi: 10.1016/0021-9991(92)90324-R |
[24] | D. Levy, C.-W. Shu and J. Yan, Local discontinuous Galerkin methods for nonlinear dispersive equations, J. Comput. Phys., 196 (2004), 751-772. doi: 10.1016/j.jcp.2003.11.013 |
[25] | D. Mitsotakis, D. Dutykh and J. Carter, On the nonlinear dynamics of the traveling-wave solutions of the Serre system, Wave Motion, 70 (2017), 166-182. doi: 10.1016/j.wavemoti.2016.09.008 |
[26] | D. Mitsotakis, B. Ilan and D. Dutykh, On the Galerkin/Finite-Element Method for the Serre Equations, J. Sci. Comput., 61 (2014), 166-195. doi: 10.1007/s10915-014-9823-3 |
[27] | D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25 (1966), 321-330. doi: 10.1017/S0022112066001678 |
[28] | D. H. Peregrine, Long waves on a beach, J. Fluid Mech., 27 (1967), 815-827. doi: 10.1017/S0022112067002605 |
[29] | A. V. Porubov and G. A. Maugin, Propagation of localized longitudinal strain waves in a plate in the presence of cubic nonlinearity, Phys. Rev. E, 74 (2006), 46617. |
[30] | H. Schamel, A modified Korteweg-de Vries equation for ion acoustic wavess due to resonant electrons, J. Plasma Phys., 9 (1973), 377-387. doi: 10.1017/S002237780000756X |
[31] | F. Serre, Contribution à l'étude des écoulements permanents et variables dans les canaux, La Houille blanche, 8 (1953), 374-388. |
[32] | J. J. Stoker, Water Waves: The mathematical theory with applications, Interscience, New York, 1957. |
[33] | M. Walkley and M. Berzins, A finite element method for the one-dimensional extended Boussinesq equations, Int. J. Numer. Meth. Fl., 29 (1999), 143-157. doi: 10.1002/(SICI)1097-0363(19990130)29:2<143::AID-FLD779>3.0.CO;2-5 |
[34] | M. Walkley and M. Berzins, A finite element method for the two-dimensional extended Boussinesq equations, Int. J. Numer. Meth. Fl., 39 (2002), 865-885. doi: 10.1002/fld.349 |
[35] | M. I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Commun. Part. Diff. Eq., 12 (1987), 1133-1173. doi: 10.1080/03605308708820522 |
[36] | J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations, SIAM J. Numer. Anal., 40 (2002), 769-791. doi: 10.1137/S0036142901390378 |