In this article, we use the elementary methods and the estimate for character sums to study a problem related to quadratic residues and the Pythagorean triples, and prove the following result. Let $ p $ be an odd prime large enough. Then for any positive number $ 0 < \epsilon < 1 $, there must exist three quadratic residues $ x, \ y $ and $ z $ modulo $ p $ with $ 1\leq x, \ y, \ z\leq p^{1+\epsilon} $ such that the equation $ x^2+y^2 = z^2 $.
Citation: Jiayuan Hu, Yu Zhan. Pythagorean triples and quadratic residues modulo an odd prime[J]. AIMS Mathematics, 2022, 7(1): 957-966. doi: 10.3934/math.2022057
In this article, we use the elementary methods and the estimate for character sums to study a problem related to quadratic residues and the Pythagorean triples, and prove the following result. Let $ p $ be an odd prime large enough. Then for any positive number $ 0 < \epsilon < 1 $, there must exist three quadratic residues $ x, \ y $ and $ z $ modulo $ p $ with $ 1\leq x, \ y, \ z\leq p^{1+\epsilon} $ such that the equation $ x^2+y^2 = z^2 $.
[1] | T. M. Apostol, Introduction to Analytic Number Theory, New York: Springer-Verlag, 1979. |
[2] | K. Ireland, M. Rosen, A classical introduction to modern number theory, New York: Springer-Verlag, 1982. |
[3] | W. P. Zhang, H. L. Li, Elementary Number Theory, Xi'an: Shaanxi Normal University Press, 2013. |
[4] | Y. W. Hou, W. P. Zhang, One kind high dimensional Kloosterman sums and its upper bound estimate, J. Shaanxi Norm. Univ., Nat. Sci. Ed., 46 (2018), 28–31. doi: 10.15983/j.cnki.jsnu.2018.05.155. doi: 10.15983/j.cnki.jsnu.2018.05.155 |
[5] | A. Granville, K. Soundararajan, Large character sums: Pretentious characters and the P$\mathrm{\acute{o}}$lya-Vinogradov theorem, J. Amer. Math. Soc., 20 (2007), 357–384. doi: 10.1090/S0894-0347-06-00536-4. doi: 10.1090/S0894-0347-06-00536-4 |
[6] | W. P. Zhang, Y. Yi, On Dirichlet characters of polynomials, Bull. London Math. Soc., 34 (2002), 469–473. doi: 10.1112/S0024609302001030. doi: 10.1112/S0024609302001030 |
[7] | W. P. Zhang, W. L. Yao, A note on the Dirichlet characters of polynomials, J. Acta Arithmetica, 115 (2004), 225–229. doi: 10.4064/aa115-3-3. doi: 10.4064/aa115-3-3 |
[8] | A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 204–207. doi: 10.1073/pnas.34.5.204. doi: 10.1073/pnas.34.5.204 |
[9] | C. Mauduit, A. S$\acute{a}$rk$\ddot{o}$zy, On finite pseudorandom binary sequences Ⅰ: measure of pseudorandomness, the Legendre symbol, Acta Arithmetica, 82 (1997), 365–377. |
[10] | K. Gong, C. H. Jia, Shifted character sums with multiplicative coefficients, J. Number Theory, 153 (2015), 364–371. doi: 10.1016/j.jnt.2015.01.015. doi: 10.1016/j.jnt.2015.01.015 |
[11] | J. Bourgain, M. Z. Garaev, S. V. Konyagin, I. E. Shparlinski, On the hidden shifted power problem, SIAM J. Comput., 41 (2012), 1524–1557. doi: 10.1137/110850414. doi: 10.1137/110850414 |
[12] | Z. W. Sun, Sequence A260911 at OEIS, 2015. Available from: http://oeis.org/A260911. |