Research article Special Issues

Pythagorean triples and quadratic residues modulo an odd prime

  • Received: 06 July 2021 Accepted: 18 September 2021 Published: 19 October 2021
  • MSC : 11A15, 11D09

  • In this article, we use the elementary methods and the estimate for character sums to study a problem related to quadratic residues and the Pythagorean triples, and prove the following result. Let $ p $ be an odd prime large enough. Then for any positive number $ 0 < \epsilon < 1 $, there must exist three quadratic residues $ x, \ y $ and $ z $ modulo $ p $ with $ 1\leq x, \ y, \ z\leq p^{1+\epsilon} $ such that the equation $ x^2+y^2 = z^2 $.

    Citation: Jiayuan Hu, Yu Zhan. Pythagorean triples and quadratic residues modulo an odd prime[J]. AIMS Mathematics, 2022, 7(1): 957-966. doi: 10.3934/math.2022057

    Related Papers:

  • In this article, we use the elementary methods and the estimate for character sums to study a problem related to quadratic residues and the Pythagorean triples, and prove the following result. Let $ p $ be an odd prime large enough. Then for any positive number $ 0 < \epsilon < 1 $, there must exist three quadratic residues $ x, \ y $ and $ z $ modulo $ p $ with $ 1\leq x, \ y, \ z\leq p^{1+\epsilon} $ such that the equation $ x^2+y^2 = z^2 $.



    加载中


    [1] T. M. Apostol, Introduction to Analytic Number Theory, New York: Springer-Verlag, 1979.
    [2] K. Ireland, M. Rosen, A classical introduction to modern number theory, New York: Springer-Verlag, 1982.
    [3] W. P. Zhang, H. L. Li, Elementary Number Theory, Xi'an: Shaanxi Normal University Press, 2013.
    [4] Y. W. Hou, W. P. Zhang, One kind high dimensional Kloosterman sums and its upper bound estimate, J. Shaanxi Norm. Univ., Nat. Sci. Ed., 46 (2018), 28–31. doi: 10.15983/j.cnki.jsnu.2018.05.155. doi: 10.15983/j.cnki.jsnu.2018.05.155
    [5] A. Granville, K. Soundararajan, Large character sums: Pretentious characters and the P$\mathrm{\acute{o}}$lya-Vinogradov theorem, J. Amer. Math. Soc., 20 (2007), 357–384. doi: 10.1090/S0894-0347-06-00536-4. doi: 10.1090/S0894-0347-06-00536-4
    [6] W. P. Zhang, Y. Yi, On Dirichlet characters of polynomials, Bull. London Math. Soc., 34 (2002), 469–473. doi: 10.1112/S0024609302001030. doi: 10.1112/S0024609302001030
    [7] W. P. Zhang, W. L. Yao, A note on the Dirichlet characters of polynomials, J. Acta Arithmetica, 115 (2004), 225–229. doi: 10.4064/aa115-3-3. doi: 10.4064/aa115-3-3
    [8] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 204–207. doi: 10.1073/pnas.34.5.204. doi: 10.1073/pnas.34.5.204
    [9] C. Mauduit, A. S$\acute{a}$rk$\ddot{o}$zy, On finite pseudorandom binary sequences Ⅰ: measure of pseudorandomness, the Legendre symbol, Acta Arithmetica, 82 (1997), 365–377.
    [10] K. Gong, C. H. Jia, Shifted character sums with multiplicative coefficients, J. Number Theory, 153 (2015), 364–371. doi: 10.1016/j.jnt.2015.01.015. doi: 10.1016/j.jnt.2015.01.015
    [11] J. Bourgain, M. Z. Garaev, S. V. Konyagin, I. E. Shparlinski, On the hidden shifted power problem, SIAM J. Comput., 41 (2012), 1524–1557. doi: 10.1137/110850414. doi: 10.1137/110850414
    [12] Z. W. Sun, Sequence A260911 at OEIS, 2015. Available from: http://oeis.org/A260911.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2224) PDF downloads(107) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog