Considering a family of rational map $ {U_{mn\lambda }} $ of the renormalization transformation of the generalized diamond hierarchical Potts model, we give the asymptotic formula of the Hausdorff dimension of the Julia sets of $ {U_{mn\lambda }} $ as the parameter $ \lambda $ tends to infinity, here
$ {U_{mn\lambda }} = {\left[ {\frac{{{{\left( {z + \lambda - 1} \right)}^n} + \left( {\lambda - 1} \right){{\left( {z - 1} \right)}^n}}}{{{{\left( {z + \lambda - 1} \right)}^n} - {{\left( {z - 1} \right)}^n}}}} \right]^m}, $
where $ m \ge 2 $, $ n \ge 2 $ are two natural numbers, $ \lambda \in {{\mathbb{C}} } $.
Citation: Tingting Li, Junyang Gao. The Hausdorff dimension of the Julia sets concerning generated renormalization transformation[J]. AIMS Mathematics, 2022, 7(1): 939-956. doi: 10.3934/math.2022056
Considering a family of rational map $ {U_{mn\lambda }} $ of the renormalization transformation of the generalized diamond hierarchical Potts model, we give the asymptotic formula of the Hausdorff dimension of the Julia sets of $ {U_{mn\lambda }} $ as the parameter $ \lambda $ tends to infinity, here
$ {U_{mn\lambda }} = {\left[ {\frac{{{{\left( {z + \lambda - 1} \right)}^n} + \left( {\lambda - 1} \right){{\left( {z - 1} \right)}^n}}}{{{{\left( {z + \lambda - 1} \right)}^n} - {{\left( {z - 1} \right)}^n}}}} \right]^m}, $
where $ m \ge 2 $, $ n \ge 2 $ are two natural numbers, $ \lambda \in {{\mathbb{C}} } $.
[1] |
P. Bleher, M. Lyubich, Julia sets and complex singularities in hierarchical Ising models, Comm. Math. Phys., 141 (1991), 453–474. doi: 10.1007/BF02102810. doi: 10.1007/BF02102810
![]() |
[2] |
P. Bleher, M. Lyubich, R. Roeder, Lee-Yang-Fisher zeros for DHL and 2d rational dynamics, Ⅰ. Foliation of the physical cylinder, J. de Mathématiques Pures et Appliquées, 107 (2017), 491–590. doi: 10.1016/j.matpur.2016.07.008. doi: 10.1016/j.matpur.2016.07.008
![]() |
[3] |
P. Bleher, M. Lyubich, R. Roeder, Lee-Yang-Fisher zeros for DHL and 2d rational dynamics, Ⅱ. Global pluripotential interpretation, J. Geom. Anal., 30 (2020), 777–833. doi: 10.1007/s12220-019-00167-6. doi: 10.1007/s12220-019-00167-6
![]() |
[4] |
B. Derrida, L. DeSeze, C. Itzykson, Fractal structure of zeros in hierarchical models, J. Stat. Phys., 33 (1983), 559–569. doi: 10.1007/BF01018834. doi: 10.1007/BF01018834
![]() |
[5] | J. Y. Qiao, Julia sets and complex singularities of free energies, In: Memoirs of the American Mathematical Society, 2014. doi: 10.1090/memo/1102. |
[6] |
J. Y. Qiao, Y. H. Li, On connectivity of Julia sets of Yang-Lee zeros, Comm. Math. Phys., 222 (2001), 319–326. doi: 10.1007/s002200100507. doi: 10.1007/s002200100507
![]() |
[7] |
J. Y. Qiao, Y. C. Yin, J. Y. Gao, Feigenbaum Julia sets of singularities of free energy, Ergodic Theory Dynam. Syst., 30 (2010), 1573–1591. doi: 10.1017/S0143385709000522. doi: 10.1017/S0143385709000522
![]() |
[8] |
C. N. Yang, T. D. Lee, Statistical theory of equations of state and phase transitions, Ⅰ. Theory of condensation, Phys. Rev., 87 (1952), 404–409. doi: 10.1103/PhysRev.87.404. doi: 10.1103/PhysRev.87.404
![]() |
[9] |
T. D. Lee, C. N. Yang, Statistical theory of equations of state and phase transitions, Ⅱ. Lattice gas and Ising model, Phys. Rev., 87 (1952), 410–419. doi: 10.1103/PhysRev.87.410. doi: 10.1103/PhysRev.87.410
![]() |
[10] | M. E. Fisher, The nature of critical points, In: W. E. Brittin (editor), Lectures in Theoretical Physics Ⅶ C, University of Colorado Press, Boulder, 1965. doi: 10.1088/0031-9112/11/2/009. |
[11] |
M. Aspenberg, M. Yampolsky, Mating non-renormalizable quadratic polynomials, Comm. Math. Phys., 287 (2009), 1–40. doi: 10.1007/s00220-008-0598-y. doi: 10.1007/s00220-008-0598-y
![]() |
[12] |
J. Y. Gao, Julia sets, Hausdorff dimension and phase transition, Chaos Solitons Fractals, 44 (2011), 871–877. doi: 10.1016/j.chaos.2011.07.013. doi: 10.1016/j.chaos.2011.07.013
![]() |
[13] |
B. Hu, B. Lin, Yang-Lee zero, Julia sets and theirs ingularity spectra, Phys. Rev., 39 (1989), 4789–4796. doi: 10.1103/PhysRevA.39.4789. doi: 10.1103/PhysRevA.39.4789
![]() |
[14] |
X. G. Wang, W. Y. Qiu, Y. C. Yin, J. Y. Qiao, Connectivity of the Mandelbrot set for the family of renormalization transformations, Sci. China Math., 53 (2010), 849–862. doi: 10.1007/s11425-010-0034-6. doi: 10.1007/s11425-010-0034-6
![]() |
[15] |
P. Bleher, M. Lyubich, Julia sets and complex singularities in hierarchical Ising models, Comm. Math. Phys., 141 (1991), 453–474. doi: 10.1007/BF02102810. doi: 10.1007/BF02102810
![]() |
[16] | J. Y. Qiao, Julia sets and complex singularities of free energies, In: Memoirs of the American Mathematical Society, Providence, 2014. doi: 10.1090/memo/1102. |
[17] |
M. Widom, D. Bensimon, L. P. Kadanoff, S. J. Shenker, Strange objects in the complex plane, J. Stat. Phys., 32 (1983), 443–454. doi: 10.1007/BF01008949. doi: 10.1007/BF01008949
![]() |
[18] |
X. G. Wang, F. Yang, Hausdorff dimension of the boundary of the immediate basin of infinity of McMullen maps, Indian Acad. Sci. (Math. Sci.), 124 (2014), 551–562. doi: 10.1007/s12044-014-0203-6. doi: 10.1007/s12044-014-0203-6
![]() |
[19] |
A. Osbaldestin, 1/s-expansion for generalized dimensions in a hierarchicals-state Potts model, J. Phys. A., 28 (1995), 5951–5962. doi: 10.1088/0305-4470/28/20/023. doi: 10.1088/0305-4470/28/20/023
![]() |
[20] |
F. Yang, J. S. Zeng, On the dynamics of a family of generated renormalization tranformations, J. Math. Anal. Appl., 413 (2014), 361–377. doi: 10.1016/j.jmaa.2013.11.068. doi: 10.1016/j.jmaa.2013.11.068
![]() |
[21] |
J. Y. Gao, The Hausdorff dimension of the Julia sets concerning renormalization transformation, Chaos Solitons Fractals, 78 (2015), 134–139. doi: 10.1016/j.chaos.2015.07.027. doi: 10.1016/j.chaos.2015.07.027
![]() |
[22] |
D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dyn. Syst., 2 (1982), 99–107. doi: 10.1017/S0143385700009603. doi: 10.1017/S0143385700009603
![]() |
[23] | K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2 Eds, 2003. doi: 10.2307/2532125. |
[24] | C. McMullen, Complex dynamics and renormalization, 135, In: Annals of Mathematics Studies, Princeton University Press, 1994. doi: 10.1515/9781400882557-003. |