Considering a family of rational map $ {U_{mn\lambda }} $ of the renormalization transformation of the generalized diamond hierarchical Potts model, we give the asymptotic formula of the Hausdorff dimension of the Julia sets of $ {U_{mn\lambda }} $ as the parameter $ \lambda $ tends to infinity, here
$ {U_{mn\lambda }} = {\left[ {\frac{{{{\left( {z + \lambda - 1} \right)}^n} + \left( {\lambda - 1} \right){{\left( {z - 1} \right)}^n}}}{{{{\left( {z + \lambda - 1} \right)}^n} - {{\left( {z - 1} \right)}^n}}}} \right]^m}, $
where $ m \ge 2 $, $ n \ge 2 $ are two natural numbers, $ \lambda \in {{\mathbb{C}} } $.
Citation: Tingting Li, Junyang Gao. The Hausdorff dimension of the Julia sets concerning generated renormalization transformation[J]. AIMS Mathematics, 2022, 7(1): 939-956. doi: 10.3934/math.2022056
Considering a family of rational map $ {U_{mn\lambda }} $ of the renormalization transformation of the generalized diamond hierarchical Potts model, we give the asymptotic formula of the Hausdorff dimension of the Julia sets of $ {U_{mn\lambda }} $ as the parameter $ \lambda $ tends to infinity, here
$ {U_{mn\lambda }} = {\left[ {\frac{{{{\left( {z + \lambda - 1} \right)}^n} + \left( {\lambda - 1} \right){{\left( {z - 1} \right)}^n}}}{{{{\left( {z + \lambda - 1} \right)}^n} - {{\left( {z - 1} \right)}^n}}}} \right]^m}, $
where $ m \ge 2 $, $ n \ge 2 $ are two natural numbers, $ \lambda \in {{\mathbb{C}} } $.
[1] | P. Bleher, M. Lyubich, Julia sets and complex singularities in hierarchical Ising models, Comm. Math. Phys., 141 (1991), 453–474. doi: 10.1007/BF02102810. doi: 10.1007/BF02102810 |
[2] | P. Bleher, M. Lyubich, R. Roeder, Lee-Yang-Fisher zeros for DHL and 2d rational dynamics, Ⅰ. Foliation of the physical cylinder, J. de Mathématiques Pures et Appliquées, 107 (2017), 491–590. doi: 10.1016/j.matpur.2016.07.008. doi: 10.1016/j.matpur.2016.07.008 |
[3] | P. Bleher, M. Lyubich, R. Roeder, Lee-Yang-Fisher zeros for DHL and 2d rational dynamics, Ⅱ. Global pluripotential interpretation, J. Geom. Anal., 30 (2020), 777–833. doi: 10.1007/s12220-019-00167-6. doi: 10.1007/s12220-019-00167-6 |
[4] | B. Derrida, L. DeSeze, C. Itzykson, Fractal structure of zeros in hierarchical models, J. Stat. Phys., 33 (1983), 559–569. doi: 10.1007/BF01018834. doi: 10.1007/BF01018834 |
[5] | J. Y. Qiao, Julia sets and complex singularities of free energies, In: Memoirs of the American Mathematical Society, 2014. doi: 10.1090/memo/1102. |
[6] | J. Y. Qiao, Y. H. Li, On connectivity of Julia sets of Yang-Lee zeros, Comm. Math. Phys., 222 (2001), 319–326. doi: 10.1007/s002200100507. doi: 10.1007/s002200100507 |
[7] | J. Y. Qiao, Y. C. Yin, J. Y. Gao, Feigenbaum Julia sets of singularities of free energy, Ergodic Theory Dynam. Syst., 30 (2010), 1573–1591. doi: 10.1017/S0143385709000522. doi: 10.1017/S0143385709000522 |
[8] | C. N. Yang, T. D. Lee, Statistical theory of equations of state and phase transitions, Ⅰ. Theory of condensation, Phys. Rev., 87 (1952), 404–409. doi: 10.1103/PhysRev.87.404. doi: 10.1103/PhysRev.87.404 |
[9] | T. D. Lee, C. N. Yang, Statistical theory of equations of state and phase transitions, Ⅱ. Lattice gas and Ising model, Phys. Rev., 87 (1952), 410–419. doi: 10.1103/PhysRev.87.410. doi: 10.1103/PhysRev.87.410 |
[10] | M. E. Fisher, The nature of critical points, In: W. E. Brittin (editor), Lectures in Theoretical Physics Ⅶ C, University of Colorado Press, Boulder, 1965. doi: 10.1088/0031-9112/11/2/009. |
[11] | M. Aspenberg, M. Yampolsky, Mating non-renormalizable quadratic polynomials, Comm. Math. Phys., 287 (2009), 1–40. doi: 10.1007/s00220-008-0598-y. doi: 10.1007/s00220-008-0598-y |
[12] | J. Y. Gao, Julia sets, Hausdorff dimension and phase transition, Chaos Solitons Fractals, 44 (2011), 871–877. doi: 10.1016/j.chaos.2011.07.013. doi: 10.1016/j.chaos.2011.07.013 |
[13] | B. Hu, B. Lin, Yang-Lee zero, Julia sets and theirs ingularity spectra, Phys. Rev., 39 (1989), 4789–4796. doi: 10.1103/PhysRevA.39.4789. doi: 10.1103/PhysRevA.39.4789 |
[14] | X. G. Wang, W. Y. Qiu, Y. C. Yin, J. Y. Qiao, Connectivity of the Mandelbrot set for the family of renormalization transformations, Sci. China Math., 53 (2010), 849–862. doi: 10.1007/s11425-010-0034-6. doi: 10.1007/s11425-010-0034-6 |
[15] | P. Bleher, M. Lyubich, Julia sets and complex singularities in hierarchical Ising models, Comm. Math. Phys., 141 (1991), 453–474. doi: 10.1007/BF02102810. doi: 10.1007/BF02102810 |
[16] | J. Y. Qiao, Julia sets and complex singularities of free energies, In: Memoirs of the American Mathematical Society, Providence, 2014. doi: 10.1090/memo/1102. |
[17] | M. Widom, D. Bensimon, L. P. Kadanoff, S. J. Shenker, Strange objects in the complex plane, J. Stat. Phys., 32 (1983), 443–454. doi: 10.1007/BF01008949. doi: 10.1007/BF01008949 |
[18] | X. G. Wang, F. Yang, Hausdorff dimension of the boundary of the immediate basin of infinity of McMullen maps, Indian Acad. Sci. (Math. Sci.), 124 (2014), 551–562. doi: 10.1007/s12044-014-0203-6. doi: 10.1007/s12044-014-0203-6 |
[19] | A. Osbaldestin, 1/s-expansion for generalized dimensions in a hierarchicals-state Potts model, J. Phys. A., 28 (1995), 5951–5962. doi: 10.1088/0305-4470/28/20/023. doi: 10.1088/0305-4470/28/20/023 |
[20] | F. Yang, J. S. Zeng, On the dynamics of a family of generated renormalization tranformations, J. Math. Anal. Appl., 413 (2014), 361–377. doi: 10.1016/j.jmaa.2013.11.068. doi: 10.1016/j.jmaa.2013.11.068 |
[21] | J. Y. Gao, The Hausdorff dimension of the Julia sets concerning renormalization transformation, Chaos Solitons Fractals, 78 (2015), 134–139. doi: 10.1016/j.chaos.2015.07.027. doi: 10.1016/j.chaos.2015.07.027 |
[22] | D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dyn. Syst., 2 (1982), 99–107. doi: 10.1017/S0143385700009603. doi: 10.1017/S0143385700009603 |
[23] | K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2 Eds, 2003. doi: 10.2307/2532125. |
[24] | C. McMullen, Complex dynamics and renormalization, 135, In: Annals of Mathematics Studies, Princeton University Press, 1994. doi: 10.1515/9781400882557-003. |