Research article

The Hausdorff dimension of the Julia sets concerning generated renormalization transformation

  • Received: 04 June 2021 Accepted: 09 October 2021 Published: 19 October 2021
  • MSC : 37F10, 37F45

  • Considering a family of rational map $ {U_{mn\lambda }} $ of the renormalization transformation of the generalized diamond hierarchical Potts model, we give the asymptotic formula of the Hausdorff dimension of the Julia sets of $ {U_{mn\lambda }} $ as the parameter $ \lambda $ tends to infinity, here

    $ {U_{mn\lambda }} = {\left[ {\frac{{{{\left( {z + \lambda - 1} \right)}^n} + \left( {\lambda - 1} \right){{\left( {z - 1} \right)}^n}}}{{{{\left( {z + \lambda - 1} \right)}^n} - {{\left( {z - 1} \right)}^n}}}} \right]^m}, $

    where $ m \ge 2 $, $ n \ge 2 $ are two natural numbers, $ \lambda \in {{\mathbb{C}} } $.

    Citation: Tingting Li, Junyang Gao. The Hausdorff dimension of the Julia sets concerning generated renormalization transformation[J]. AIMS Mathematics, 2022, 7(1): 939-956. doi: 10.3934/math.2022056

    Related Papers:

  • Considering a family of rational map $ {U_{mn\lambda }} $ of the renormalization transformation of the generalized diamond hierarchical Potts model, we give the asymptotic formula of the Hausdorff dimension of the Julia sets of $ {U_{mn\lambda }} $ as the parameter $ \lambda $ tends to infinity, here

    $ {U_{mn\lambda }} = {\left[ {\frac{{{{\left( {z + \lambda - 1} \right)}^n} + \left( {\lambda - 1} \right){{\left( {z - 1} \right)}^n}}}{{{{\left( {z + \lambda - 1} \right)}^n} - {{\left( {z - 1} \right)}^n}}}} \right]^m}, $

    where $ m \ge 2 $, $ n \ge 2 $ are two natural numbers, $ \lambda \in {{\mathbb{C}} } $.



    加载中


    [1] P. Bleher, M. Lyubich, Julia sets and complex singularities in hierarchical Ising models, Comm. Math. Phys., 141 (1991), 453–474. doi: 10.1007/BF02102810. doi: 10.1007/BF02102810
    [2] P. Bleher, M. Lyubich, R. Roeder, Lee-Yang-Fisher zeros for DHL and 2d rational dynamics, Ⅰ. Foliation of the physical cylinder, J. de Mathématiques Pures et Appliquées, 107 (2017), 491–590. doi: 10.1016/j.matpur.2016.07.008. doi: 10.1016/j.matpur.2016.07.008
    [3] P. Bleher, M. Lyubich, R. Roeder, Lee-Yang-Fisher zeros for DHL and 2d rational dynamics, Ⅱ. Global pluripotential interpretation, J. Geom. Anal., 30 (2020), 777–833. doi: 10.1007/s12220-019-00167-6. doi: 10.1007/s12220-019-00167-6
    [4] B. Derrida, L. DeSeze, C. Itzykson, Fractal structure of zeros in hierarchical models, J. Stat. Phys., 33 (1983), 559–569. doi: 10.1007/BF01018834. doi: 10.1007/BF01018834
    [5] J. Y. Qiao, Julia sets and complex singularities of free energies, In: Memoirs of the American Mathematical Society, 2014. doi: 10.1090/memo/1102.
    [6] J. Y. Qiao, Y. H. Li, On connectivity of Julia sets of Yang-Lee zeros, Comm. Math. Phys., 222 (2001), 319–326. doi: 10.1007/s002200100507. doi: 10.1007/s002200100507
    [7] J. Y. Qiao, Y. C. Yin, J. Y. Gao, Feigenbaum Julia sets of singularities of free energy, Ergodic Theory Dynam. Syst., 30 (2010), 1573–1591. doi: 10.1017/S0143385709000522. doi: 10.1017/S0143385709000522
    [8] C. N. Yang, T. D. Lee, Statistical theory of equations of state and phase transitions, Ⅰ. Theory of condensation, Phys. Rev., 87 (1952), 404–409. doi: 10.1103/PhysRev.87.404. doi: 10.1103/PhysRev.87.404
    [9] T. D. Lee, C. N. Yang, Statistical theory of equations of state and phase transitions, Ⅱ. Lattice gas and Ising model, Phys. Rev., 87 (1952), 410–419. doi: 10.1103/PhysRev.87.410. doi: 10.1103/PhysRev.87.410
    [10] M. E. Fisher, The nature of critical points, In: W. E. Brittin (editor), Lectures in Theoretical Physics Ⅶ C, University of Colorado Press, Boulder, 1965. doi: 10.1088/0031-9112/11/2/009.
    [11] M. Aspenberg, M. Yampolsky, Mating non-renormalizable quadratic polynomials, Comm. Math. Phys., 287 (2009), 1–40. doi: 10.1007/s00220-008-0598-y. doi: 10.1007/s00220-008-0598-y
    [12] J. Y. Gao, Julia sets, Hausdorff dimension and phase transition, Chaos Solitons Fractals, 44 (2011), 871–877. doi: 10.1016/j.chaos.2011.07.013. doi: 10.1016/j.chaos.2011.07.013
    [13] B. Hu, B. Lin, Yang-Lee zero, Julia sets and theirs ingularity spectra, Phys. Rev., 39 (1989), 4789–4796. doi: 10.1103/PhysRevA.39.4789. doi: 10.1103/PhysRevA.39.4789
    [14] X. G. Wang, W. Y. Qiu, Y. C. Yin, J. Y. Qiao, Connectivity of the Mandelbrot set for the family of renormalization transformations, Sci. China Math., 53 (2010), 849–862. doi: 10.1007/s11425-010-0034-6. doi: 10.1007/s11425-010-0034-6
    [15] P. Bleher, M. Lyubich, Julia sets and complex singularities in hierarchical Ising models, Comm. Math. Phys., 141 (1991), 453–474. doi: 10.1007/BF02102810. doi: 10.1007/BF02102810
    [16] J. Y. Qiao, Julia sets and complex singularities of free energies, In: Memoirs of the American Mathematical Society, Providence, 2014. doi: 10.1090/memo/1102.
    [17] M. Widom, D. Bensimon, L. P. Kadanoff, S. J. Shenker, Strange objects in the complex plane, J. Stat. Phys., 32 (1983), 443–454. doi: 10.1007/BF01008949. doi: 10.1007/BF01008949
    [18] X. G. Wang, F. Yang, Hausdorff dimension of the boundary of the immediate basin of infinity of McMullen maps, Indian Acad. Sci. (Math. Sci.), 124 (2014), 551–562. doi: 10.1007/s12044-014-0203-6. doi: 10.1007/s12044-014-0203-6
    [19] A. Osbaldestin, 1/s-expansion for generalized dimensions in a hierarchicals-state Potts model, J. Phys. A., 28 (1995), 5951–5962. doi: 10.1088/0305-4470/28/20/023. doi: 10.1088/0305-4470/28/20/023
    [20] F. Yang, J. S. Zeng, On the dynamics of a family of generated renormalization tranformations, J. Math. Anal. Appl., 413 (2014), 361–377. doi: 10.1016/j.jmaa.2013.11.068. doi: 10.1016/j.jmaa.2013.11.068
    [21] J. Y. Gao, The Hausdorff dimension of the Julia sets concerning renormalization transformation, Chaos Solitons Fractals, 78 (2015), 134–139. doi: 10.1016/j.chaos.2015.07.027. doi: 10.1016/j.chaos.2015.07.027
    [22] D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dyn. Syst., 2 (1982), 99–107. doi: 10.1017/S0143385700009603. doi: 10.1017/S0143385700009603
    [23] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2 Eds, 2003. doi: 10.2307/2532125.
    [24] C. McMullen, Complex dynamics and renormalization, 135, In: Annals of Mathematics Studies, Princeton University Press, 1994. doi: 10.1515/9781400882557-003.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1917) PDF downloads(81) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog