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1. Introduction

It is an important aspect of statistical mechanics to reveal the nature of phase transition by
establishing statistical mechanical model. In fact, the statistical mechanical models on hierarchical
lattices have exhibit a deep connection between their limiting sets of the zeros of the partition
functions and the Julia sets of rational maps in complex dynamics [1–7]. In 1952, Yang and Lee [8, 9]
proved the celebrated Unite circle theorem. This theorem deals with the analytic continuation of the
free energy on the complex plane. Here the free energy means the logarithm of the partition function.
They proved the famous circle theorem in an exact mathematical way for an Ising ferromagnet model
in statistical mechanics, which asserts that the zeros of the partition function for some magnetic
materials lie on the unit circle in the complex plane. An important problem stated in Lee-Yang’s paper
is to study the limit distribution of zeros of the function (Lee-Yang zeros). Here the complex
singularities of free energy lie on this unit circle.
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In 1965, Fisher [3, 10] initiated the investigation of zeros of the partition function in the complex
temperature plane (Fisher zeros). However, compared with the Lee-Yang zeros, Fisher zeros do not lie
on the unit circle any more.

After that, people investigated various properties of point distribution of zeros of partition function
of ferromagnet model and antimagnetic model. In 1983, Derrida et al. [4] found fractal patterns in
λ-state Potts model in diamand lattice. In fact, by Migdal-Kadanoff renormalization group theory, they
proved that the limit distribution of this physical model are dense in the Julia set J(U22λ) of a family of
rational map U22λ, here

U22λ (z) =

(
z2 + λ − 1
2z + λ − 2

)2

, (1.1)

with λ ∈ N is a positive integer. After this, it was shown that the model for non-integer λ may be
describe properties of some physical system. Many examples of physical model show the limit of
zeros of partition function are located in the Julia set of the family of rational function [1, 5–7, 11–14].
Bleher and Lyubich [15] investigated the analytic continuation of free energy or complex temperature
plane for Ising model on diamond-like hierarchical lattices. For general models, an important problem
in [15] is that how are the limit set of zeros of partition function and what is their global structure in
complex space?

In recent years, many works have been devoted to the dynamics of a family of rational maps U2nλ

of λ-state diamond-like hierarchical Potts models. Recently, for a λ-state Potts model on a generalized
diamond hierarchical, Qiao [16] proved the limit set of the zeros of the partition function is indeed the
Julia set J(Umnλ) of a family of rational map Umnλ. Here

Umnλ =

[
(z + λ − 1)n + (λ − 1) (z − 1)n

(z + λ − 1)n
− (z − 1)n

]m

, (1.2)

where m ≥ 2, n ≥ 2 are two natural numbers, λ ∈ R\ {0}. The standard diamond lattice U22λ and the
diamond-like lattice U2nλ are the special cases of Umnλ.

It is well known that the research on the Hausdorff dimension of the Julia set is an important topic
in complex dynamics and fractal theory. Many works had devoted to the asymptotic formula about the
Hausdorff dimension of the Julia set.

The first heart-stirring formula on the Hausdorff dimension of Julia sets was due to Ruelle [22]. For
polynomials Pc = zd + c with degree d ≥ 2, he proved if c is small the Hausdorff dimension dimH (Jc)
of the Julia set Jc of Pc is given by

dimH (Jc) = 1 +
|c|2

4 log d
+ O

(
|c|3

)
. (1.3)

Moreover, Widom et al. [17] improve Ruelle’s result and obtain

dimH (Jc) = 1 +
|c|2

4 log d
+ δd,2

3
(
c2c + c2c

)
16 log d

+ O
(
|c|4

)
. (1.4)

In 2012, Yang and Wang [18] use the iterated function system to show the Hausdorff dimension of
the boundary of the immediate basin of infinity of the McMullen maps fp (z) = zQ + p\zQ. They proved
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that if Q ≥ 3, then for sufficiently small p such that J
(

fp

)
is a Cantor circle, the Hausdorff dimension

dimH

(
∂Bp

)
of ∂Bp is

dimH

(
∂Bp

)
= 1 +

|p|2

log Q
+ O

(
|p|3

)
. (1.5)

For Umnλ defined as (1.2), J (Umnλ (z)) is the Julia sets of Umnλ and dimH (Jmnλ) is the Hausdorff
dimension of J (Umnλ (z)). For m = n = 2, Osbaldestin [19] gives the following asymptotic formula for
sufficiently large |λ|

dimH (J22λ) = 1 +
|λ|−

2
3

4 log 2
+ O

(
|λ|−1

)
. (1.6)

Moreover, Yang and Zeng [20] show the following asymptotic formula for m = n = d ≥ 2

dimH (Jnnλ) = 1 +
|λ|−

2
d+1

4 log d
+ O

(
|λ|−

3
d+1

)
. (1.7)

Furthermore, Gao [21] obtains the following result for sufficiently large |λ|

dimH (Jm2λ) =

 1 + |λ|
− 2

3

4 log 2 + O
(
|λ|−1

)
, f or m = 2,

1 + |λ|
− 2

2m−1

4 log(2m) + O
(
|λ|−

3
2m−1

)
, f or m ≥ 3.

(1.8)

Because of the complexity of the parameters in Umnλ, it is difficult to get the dimH (Jmnλ) of the Julia
sets J (Umnλ (z)). In this paper, we investigate the dimH (Jmnλ) and obtain the following results.

Theorem 1. Suppose |λ| is sufficiently large, then the Hausdorff dimension of J (Umnλ) is given by the
following asymptotic formula, i.e.

dimH (Jmnλ) =

 1 + |λ|
−

2(m−1)
mn−1

4 log(mn) + O
(
|λ|−

p
mn−1

)
, f or m < n,

1 + |λ|
−

2(n−1)
mn−1

4 log(mn) + O
(
|λ|−

q
mn−1

)
, f or m > n,

(1.9)

where p, q are two natural numbers related to m and n.

Corollary 1. If m = n ≥ 2, we can get that

dimH (J (Umnλ)) = 1 +
|λ|−

2
n+1

4 log n
+ O

(
|λ|−

3
n+1

)
. (1.10)

Remark. Yang and Wang [18] proved the same result of Corollary 1 by the factorization [16] of Umnλ.

2. Perturbation theorems

Qiao [16] has dealt with topological properties of the Fatou components of Umnλ. It is proved that
all components of the Fatou set of Umnλ are Jordan domains with at most one exception which is a
completely invariant domain. When |λ| is large enough, it was shown that the Julia set J (Umnλ) is
actually a quasicircle. In this case the Fatou set F (Umnλ) consists of two Jordan domains. Qiao [16]
has given the following theorem.
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Theorem 2.1. For any given natural numbers m ≥ 2 and n ≥ 2, there exists a constant λ0 > 0 such
that J (Umnλ) is a quasicircle when |λ| > λ0. Furthermore, there exists an annulus
Hmnλ = {z |rmnλ < |z| < Rmnλ } satisfying mod (Hλ)→ 0 as |λ| → +∞ such that

J (Umnλ) ⊂ Hmnλ, dimH (J (Umnλ))→ 1 as |λ| → +∞.

If the parameter λ lies in the unbounded capture domain H0, then the Julia set Jmnλ is a quasicircle.
In this case, Jmnλ moves holomorphically in H0 and its Hausdorff dimension depends real analytically
on λ by a classic result of Ruelle [22]. The following Theorem 2.2 is a weak version of [22].

Theorem 2.2. [20] Let fλ : Λ×C be a holomorphic family of hyperbolic rational maps parameterized
by Λ, where Λ is a complex manifold. Then the Hausdorff dimension of the Julia set of fλ depends real
analytically on λ ∈ Λ.

Definition 2.1. [20] Let V be a closed subset of Rn. A map S : V → V is called a contraction on V if
there exists a real number c ∈ (0, 1) such that |S (x) − S (y)| ≤ c |x − y| for all x, y ∈ V. A finite family
of contractions {S 1, . . . , S m} defined on V ⊂ Rn, with m ≥ 2, is called an iterated f unction system or
IFS in short.

To compute the Hausdorff dimension of Jmnλ with λ ∈ Λ, we need the following results.

Theorem 2.3. [23] Let {S 1, . . . , S m} be an IFS on a closed set Ω ⊂ Rn such that |S i (x) − S i (y)| ≤
ci |x − y| with 0 < ci < 1. Then
(1) There exists a unique non-empty compact set J such that J = ∪m

i=1S i (J).
(2) The Hausdorff dimension dimH (J) of J satisfies dimH (J) ≤ s, where

∑m
i=1 cs

i = 1.
(3) If we require further |S i (x) − S i (y)| ≥ bi |x − y| for 0 < bi < 1, then dimH (J) ≥ s′, where

∑m
i=1 bs′

i =

1.

The non-empty compact set J appearing in Theorem 2.3(1) is called the attractor of the IFS
{S 1, . . . , S m}.

3. Conjugation and solutions

In order to proof Theorem 1, we do some setting first.
Let v = λ−

1
mn−1 , ϕv = vm(n−1) (z − 1). Then λvmn = v. We define a new rational map with parameter v

as
fv (z) = ϕv ◦ Umnλ ◦ ϕ

−1
v (z) , (3.1)

we have

fv (z) =

[
zn + vn−1

((
zvm−1 + 1

)n
−

(
zvm−1

)n)]m
−

[
vn−1

((
zvm−1 + 1

)n
−

(
zvm−1

)n)]m[(
zvm−1 + 1

)n
−

(
zvm−1)n]m . (3.2)

Then the family
{
Umnλ : λ ∈ U∗∞ = U∞\ {∞}

}
becomes

{
fv : v ∈ V∗0 = V0\ {0}

}
for sufficiently large

λ, where U∞ and V0 is a neighborhood of ∞ and 0 respectively. Furthermore, we can assume that the
map v→ λ = v−mn+1 is a proper map with degree mn − 1 from V∗0 to U∗∞.

Since for any ε ∈ (0, 1), there exists δ > 0 such that when |v| < δ, we have fv (D1−ε) ⊂ D1−ε,
fv

(
C\D1−ε

)
⊂ C\D1−ε, where Dr = {z : |z| < r}. Hence D1−ε ⊂ F ( fv) and D1−ε ⊂ F ( fv), where F ( fv) is
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the Fatou sets of fv. So we conclude σH (J ( fv) ,S) ≤ ε, S is the unit circle. Where σH (X,Y) is the
Hausdorff distance of two compact sets X and Y is defined by

σH (X,Y) = max
{

max
x∈X

σ (x,Y) ,max
y∈Y

σ (X, y)
}
, σ (·, ·) denotes the spherical distance. This implies

that the Julia sets J ( fv) move continuously at v = 0 in the Hausdorff topology. So we get
σH (J ( fv) ,S)→ 0 as v→ 0.

It is obvious that the Julia set J ( fv) moves continuously on V∗0 in the Hausdorff topology since fv

is hyperbolic for v ∈ V∗0 . Then the Julia set J ( fv) moves continuously on V0 in the Hausdorff topology
by adding an new map fv (z) = zmn to the family

{
fv : v ∈ V∗0

}
. By characterizations of stability [24],

the Julia set J ( fv) moves holomorphically on V0. So there is a holomorphic motion h : V0 × S → C

parameterized by V0 with base point 0 such that h (0, ·) is identity and h (V,S) = J ( fv) for all v ∈ V0.
The above discussion implies that J ( fv) is a quasicircle for sufficiently small v.

Note that the Hausdorff dimension is invariant under a conformal isomorphism. This means that
we only need to calculate the Hausdorff dimension of the Julia set J ( fv) of fv since dimH (J ( fv)) =

dimH (J (Umnλ)).
Note that the Julia set Jv of fv is the unit circle if v = 0. For z ∈ J0 = S, we have f0 (z) = zmn. There

exists a holomorphic motion ϕv : J0 → C of J0 parametrized by Dε := {z : |z| < ε} and with a base
point 0 such that ϕv (J0) = Jλ and

fv ◦ ϕv (z) = ϕv ◦ f0 (z) = ϕv (zmn) , (3.3)

for all z ∈ J0. Since every point on J0 moves holomorphically, we can write ϕv in a power series of
v. It is obviously to know that some coefficients are 0 of ϕv. In the following, we adopt the notation
d := mn for convenience.

We distinguish the following two cases.
(I) If m < n, we discuss in the following three subcase.

case (I − 1). If m − 1 < 1
2 (n − 1), we can get

fv (z) = zd − dzd+1vm−1 +
d (d + 1)

2
zd+2v2(m−1) + O

(
vk

)
, (3.4)

it is easy to see that the nonzero higher order in (3.4) is n − 1 for 1
3 (n − 1) < m − 1 < 1

2 (n − 1), and the
nonzero higher order in (3.4) is 3 (m − 1) for 1

3 (n − 1) > m−1. That implies k = min {3 (m − 1) , n − 1}.
Since every point on J0 moves holomorphically, we can write ϕv (z) in a power series of v, i.e.

ϕv (z) = z
(
1 + u1 (z) vm−1 + u2 (z) v2(m−1) + O

(
vk

))
. (3.5)

Substituting (3.4) and (3.5) into (3.3), and comparing the terms to the second nonzero order about
v, we obtain the following equations

u1

(
zd

)
− du1 (z) = −dz, (3.6)

u2

(
zd

)
− du2 (z) =

d (d − 1)
2

u2
1 (z) − d (d + 1) zu1 (z) +

d (d + 1)
2

z2. (3.7)

For each non-zero integer q, l ∈ Z, the functional equation

u (zq) − qu (z) = −qzl (3.8)
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has the formal solution

u (z) =

+∞∑
k=0

zlqk

qk . (3.9)

Note that the solution (3.9) is convergent if |z| ≤ 1. This means that the solutions of (3.6) is

u1 (z) =

+∞∑
k=0

zdk

dk . (3.10)

Therefore, Eq (3.7) can be reduced to

u2

(
zd

)
− du2 (z) =

d (d − 1)
2

 +∞∑
l=0

zdl

dl

2

− d (d + 1)
+∞∑
l=0

zdl+1

dl +
d (d + 1)

2
z2. (3.11)

By (3.9) and (3.11), the solution of u2 (z) is

u2 (z) =

+∞∑
k=0

(d + 1)
+∞∑
l=0

zdl+k+dk

dl+k −
d − 1
2dk

 +∞∑
l=0

zdl+k

dl

2

−
d + 1
2dk z2dk

. (3.12)

case (I − 2). If m − 1 = 1
2 (n − 1), we can get

fv (z) = zd − dzd+1vm−1 +

(
d (d + 1)

2
zd+2 + mzn(m−1)

)
v2(m−1) + O

(
v3(m−1)

)
. (3.13)

Since every point on J0 moves holomorphically, we can write ϕv (z) in a power series about v, i.e.

ϕv (z) = z
(
1 + u1 (z) vm−1 + u2 (z) v2(m−1) + O

(
v3(m−1)

))
. (3.14)

Substituting (3.13) and (3.14) into (3.3), we obtain the following equations

u1

(
zd

)
− du1 (z) = −dz, (3.15)

u2

(
zd

)
− du2 (z) =

d (d − 1)
2

u2
1 (z) − d (d + 1) zu1 (z) +

d (d + 1)
2

z2 + mz−n. (3.16)

By (3.8) and (3.9), we get the solutions of (3.15) is

u1 (z) =

+∞∑
k=0

zdk

dk . (3.17)

Therefore, Eq (3.16) can be reduced to

u2

(
zd

)
− du2 (z) =

d (d − 1)
2

 +∞∑
l=0

zdl

dl

2

− d (d + 1)
+∞∑
l=0

zdl+1

dl +
d (d + 1)

2
z2 + mz−n. (3.18)

By (3.9) and (3.18), the solution of u2 (z) is

u2 (z) =

+∞∑
k=0

(d + 1)
+∞∑
l=0

zdl+k+dk

dl+k −
d − 1
2dk

 +∞∑
l=0

zdl+k

dl

2

−
d + 1
2dk z2dk

−
1
n

z−ndk

dk

. (3.19)
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case (I − 3). If 1
2 (n − 1) < m − 1, we can get

fv (z) = zd − dzd+1vm−1 + mzn(m−1)vn−1 +
d (d + 1)

2
zd+2v2(m−1) + O

(
vm+n−2

)
. (3.20)

Since every point on J0 moves holomorphically, we can write ϕv (z) in a power series about v, i.e.

ϕv (z) = z
(
1 + u1 (z) vm−1 + u2 (z) vn−1 + u3 (z) v2(m−1) + O

(
vm+n−2

))
. (3.21)

Substituting (3.20) and (3.21) into (3.3), we obtain the following equations

u1

(
zd

)
− du1 (z) = −dz, (3.22)

u2

(
zd

)
− du2 (z) = mz−n, (3.23)

u3

(
zd

)
− du3 (z) =

d (d − 1)
2

u2
1 (z) − d (d + 1) zu1 (z) +

d (d + 1)
2

z2. (3.24)

By (3.8) and (3.9), we get that the solutions of (3.22) and (3.23) are

u1 (z) =

+∞∑
k=0

zdk

dk , (3.25)

u2 (z) = −
1
n

+∞∑
k=0

z−ndk

dk . (3.26)

Therefore, Eq (3.24) can be reduced to

u3

(
zd

)
− du3 (z) =

d (d − 1)
2

 +∞∑
l=0

zdl

dl

2

− d (d + 1)
+∞∑
l=0

zdl+1

dl +
d (d + 1)

2
z2. (3.27)

By (3.9) and (3.27), the solution of u3 (z) is

u3 (z) =

+∞∑
k=0

(d + 1)
+∞∑
l=0

zdl+k+dk

dl+k −
d − 1
2dk

 +∞∑
l=0

zdl+k

dl

2

−
d + 1
2dk z2dk

. (3.28)

(II) If m > n, we discuss in the following three subcase.
case (II − 1). If m − 1 < 2 (n − 1), we can get

fv (z) = zd + mzn(m−1)vn−1 − dzd+1vm−1 +
m (m − 1)

2
zn(m−2)v2(n−1) + O

(
vm+n−2

)
. (3.29)

Since every point on J0 moves holomorphically, we have

ϕv (z) = z
(
1 + u1 (z) vn−1 + u2 (z) vm−1 + u3 (z) v2(n−1) + O

(
vm+n−2

))
. (3.30)

Substituting (3.29) and (3.30) into (3.3), we obtain the following equations

u1

(
zd

)
− du1 (z) = mz−n, (3.31)
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u2

(
zd

)
− du2 (z) = −dz, (3.32)

u3

(
zd

)
− du3 (z) =

d (d − 1)
2

u2
1 (z) + d (m − 1) z−nu1 (z) +

m (m − 1)
2

z−2n. (3.33)

By (3.8) and (3.9), we get that the solutions of (3.31) and (3.32) are

u1 (z) = −
1
n

+∞∑
k=0

z−ndk

dk , (3.34)

u2 (z) =

+∞∑
k=0

zdk

dk . (3.35)

Therefore, Eq (3.33) can be reduced to

u3

(
zd

)
− du3 (z) =

d (d − 1)
2

1
n

+∞∑
l=0

z−ndl

dl

2

− d (m − 1) z−n

1
n

+∞∑
l=0

z−ndl

dl

 +
m (m − 1)

2
z−2n.

(3.36)

By (3.9) and (3.36), the solution of u3 (z) is

u3 (z) =

+∞∑
k=0

m − 1
n

+∞∑
l=0

z−n(dl+1)dk

dl+k −
d − 1
2n2dk

 +∞∑
l=0

z−ndl+k

dl

2

−
m − 1
2ndk z−2ndk

. (3.37)

case (II − 2). If m − 1 = 2 (n − 1), we can get

fv (z) = zd + mzn(m−1)vn−1 +

(
m (m − 1)

2
zn(m−2)

− dzd+1
)

v2(n−1) + O
(
v3(n−1)

)
. (3.38)

Since every point on J0 moves holomorphically, we have

ϕv (z) = z
(
1 + u1 (z) vn−1 + u2 (z) v2(n−1) + O

(
v3(n−1)

))
. (3.39)

Substituting (3.38) and (3.39) into (3.3), we obtain the following equations

u1

(
zd

)
− du1 (z) = mz−n, (3.40)

u2

(
zd

)
− du2 (z) =

d (d − 1)
2

u2
1 (z) + d (m − 1) z−nu1 (z)

+
m (m − 1)

2
z−2n − dz.

(3.41)

By (3.8) and (3.9), we get that the solutions of (3.40) is

u1 (z) = −
1
n

+∞∑
k=0

z−ndk

dk , (3.42)
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Therefore, Eq (3.41) can be reduced to

u2

(
zd

)
− du2 (z) =

d (d − 1)
2

1
n

+∞∑
l=0

z−ndl

dl

2

− d (m − 1) z−n

1
n

+∞∑
l=0

z−ndl

dl

 +
m (m − 1)

2
z−2n − dz.

(3.43)

By (3.9) and (3.43), the solution of u2 (z) is

u2 (z) =

+∞∑
k=0

m − 1
n

+∞∑
l=0

z−n(dl+1)dk

dl+k −
d − 1
2n2dk

 +∞∑
l=0

z−ndl+k

dl

2

−
m − 1
2ndk z−2ndk

+
zdk

dk

. (3.44)

case (II − 3). If m − 1 > 2 (n − 1), we can get

fv (z) = zd + mzn(m−1)vn−1 +
m (m − 1)

2
zn(m−2)v2(n−1) + O

(
vk

)
, (3.45)

it is easy to know that the nonzero higher order in (3.45) is m−1 for 2 (n − 1) < m−1 < 3 (n − 1), and the
nonzero higher order in (3.45) is 3 (n − 1) for m−1 > 3 (n − 1). That implies k = min {3 (n − 1) ,m − 1}.

Since every point on J0 moves holomorphically, we have

ϕv (z) = z
(
1 + u1 (z) vn−1 + u2 (z) v2(n−1) + O

(
vk

))
. (3.46)

Substituting (3.45) and (3.46) into (3.3), we obtain the following equations

u1

(
zd

)
− du1 (z) = mz−n, (3.47)

u2

(
zd

)
− du2 (z) =

d (d − 1)
2

u2
1 (z) + d (m − 1) z−nu1 (z) +

m (m − 1)
2

z−2n. (3.48)

By (3.8) and (3.9), we get that the solutions of (3.47) is

u1 (z) = −
1
n

+∞∑
k=0

z−ndk

dk . (3.49)

Therefore, Eq (3.48) can be reduced to

u2

(
zd

)
− du2 (z) =

d (d − 1)
2

1
n

+∞∑
l=0

z−ndl

dl

2

− d (m − 1) z−n 1
n

+∞∑
l=0

z−ndl

dl +
m (m − 1)

2
z−2n.

(3.50)

By (3.9) and (3.50), the solution of u2 (z) is

u2 (z) =

+∞∑
k=0

m − 1
n

+∞∑
l=0

z−n(dl+1)dk

dl+k −
d − 1
2n2dk

 +∞∑
l=0

z−ndl+k

dl

2

−
m − 1
2ndk z−2ndk

. (3.51)
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4. Proof of the Theorem 1

In fact, the proof of the asymptotic formula (1.9) is based on the calculation of an explicit iterated
function system. We only give the proof of case (II − 3) in Section 3, the proofs of the other cases are
the same as this case. Without loss of generality, we suppose that k = 3(n − 1) in (3.45).

For each p ≥ 1, the collection of the fixed points of f p
v

on the Julia set Jv forms the finite set

Fix
(
f p
v
)

=

{
ϕv

(
e2πit j

)
: t j =

j
dp − 1

, 1 ≤ j ≤ dp − 1
}
. (4.1)

By (3.3) and the chain rule, we have
(
f p
v
)′ (
ϕv

(
e2πit j

))
=

∏p−1
k=0 ( fv)′

(
ϕv

(
e2πidkt j

))
.

Firstly, we need proof the following proposition.

Proposition 4.1. For every D > 0 and all sufficiently large n, the following holds

1
dp − 1

dp−1∑
j=1

p−1∏
k=0

∣∣∣∣( fv)′
(
ϕv

(
e2πidkt j

))∣∣∣∣−D
= d−pD

(
1 +

D2 p
4

∣∣∣vn−1
∣∣∣2 + O

(
v3(n−1)

))
. (4.2)

Proof. By (3.45), we have

fv
′ (z) = dzd−1 + d (m − 1) zn(m−1)−1vn−1

+
d (m − 1) (m − 2)

2
zn(m−2)−1v2(n−1) + O

(
v3(n−1)

)
.

(4.3)

Substituting (3.46) into (4.3), we have

fv
′ (ϕv (z)) = dzd−1 + dzd−1 (

(d − 1) u1 (z) + (m − 1) z−n)
+ dzd−1

(
(d − 1) u2 (z) +

(d − 1) (d − 2)
2

u2
1 (z)

+ (m − 1) (n (m − 1) − 1) z−nu1 (z)

+
(m − 1) (m − 2)

2
z−2n

)
v2(n−1) + O

(
v3(n−1)

)
.

(4.4)

Define σ := σ (t) = e2πit. Then σσ = 1. For 0 ≤ m ≤ n − 1, by (4.4), we have∣∣∣∣ fv
′
(
ϕv

(
σdk))∣∣∣∣2 = fv

′
(
ϕ
(
σdk))

fv
′
(
ϕ
(
σdk

))
= d2 + Akvn−1 + Ak vn−1 + AkAk

∣∣∣vn−1
∣∣∣2/d2

+ Bkv2(n−1) + Bk v2(n−1) + O
(
v3(n−1)

)
,

(4.5)

where
Ak = d2 (d − 1) u1

(
σdk)

+ (m − 1)
(
σdk)−n

(4.6)

and

Bk = d2 (d − 1) u2

(
σdk)

+
d2 (d − 1) (d − 2)

2
u2

2

(
σdk)

+ d2 (m − 1) (n (m − 1) − 1)
(
σdk)−n

u1

(
σdk)

+
d2 (m − 1) (m − 2)

2

(
σdk)−2n

.

(4.7)
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For every D > 0, by (4.5), we have

p−1∏
k=0

∣∣∣∣ fv
′
(
ϕv

(
σdk))∣∣∣∣−D

=

p−1∏
k=0

(∣∣∣∣ fv
′
(
ϕv

(
σdk))∣∣∣∣2)− D

2

= d−pD
p−1∏
k=0

1 +
Akvn−1 + Ak vn−1 + Bkv2(n−1) + Bk v2(n−1)

d2

+
AkAk

∣∣∣vn−1
∣∣∣2

d4 + O
(
v2n−1

)
− D

2

= d−pD −
D
2

d−pD−2
p−1∑
k=0

(
Akvn−1 + Ak vn−1 + Bkv2(n−1) + Bk v2(n−1)

)
−

D
2

d−pD−4

 ∑
0≤k1<k2≤p−1

(
Ak1 Ak2v

2(n−1) + Ak1 Ak2v
2(n−1)

)
+

∑
0≤k1,k2≤p−1

Ak1 Ak2

∣∣∣vn−1
∣∣∣2

+
D (D + 2)

8
d−pD−4

 p−1∑
k=0

(
Akvn−1 + Ak vn−1

)
2

+ O
(
v3(n−1)

)
.

(4.8)

Let k, k1, k2 ∈ N. If p ≥ 1, we can get the following results.
(1) Since (d, dp − 1) = 1, we have

(
dk, dq − 1

)
= 1, k ≥ 0. That is

dk . 0 mod dp − 1. (4.9)

(2) Since dp − 1 is relative prime to dk′ (k′ ≥ 0) by (1), it shows that dk + 1 . 0 mod dp − 1 (k ≥ 0). Let
k = lp + t (l ≥ 0, 0 ≤ t ≤ p − 1). We have dk + 1 = dlp+t − dt + dt + 1 ≡ dt − 1 , 0 mod dp − 1 since
0 <

∣∣∣dt + 1
∣∣∣ < ∣∣∣dt − 1

∣∣∣ That shows

dk1 + dk2 . 0 mod dp − 1. (4.10)

(3) Since dq − 1 is relative prime to dk′ , k′ ≥ 0, we can find k such that dk − 1 ≡ 0 mod dp − 1 for fix
p ≥ 1. Let k = lp + t, where l ≥ 0 and 0 ≤ t ≤ p − 1. We have dk − 1 = dlp+t − dt + dt − 1 ≡ dt − 1 mod
dp − 1. This means that dk − 1 ≡ 0 mod dp − 1 if and only if t = 0 since

∣∣∣dt − 1
∣∣∣ < |dp − 1|. We get

dk1 − dk2 mod dp − 1 i f and only i f dk1 − dk2 = lp f or some l ∈ N. (4.11)

It is convenient to introduce the average notation

〈G (t)〉p :=
j

dp − 1

dp−1∑
j=1

G
(
t j

)
, (4.12)

where G is a continuous function defined on the interval [0, 1) and t j =
j

dp−1 is defined in (4.1).
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For each p ≥ 1 and any l ∈ N, it is straightforward to verify that the average in (4.12) has following
useful property 〈

σl
〉

p
=

〈
e2πilt

〉
p

=

{
1, if l ≡ 0 mod dn − 1,
0, otherwise.

(4.13)

By (3.49) and (3.50), the average property (4.13) and (4.9), (4.10), it can be get the following
results.

Suppose 0 ≤ k, k1, k2 ≤ p − 1, then〈
σdk〉

p
= 0,

〈
σ(dk1 +dk2)〉

p
= 0,〈

u1

(
σdk)〉

p
= 0,

〈
σdk1 u1

(
σdk2

)〉
p

= 0,〈
u1

(
σdk1

)
u1

(
σdk2

)〉
p

= 0 and
〈
u2

(
σdk)〉

p
= 0.

(4.14)

As an immediate result of (4.14), if 0 ≤ k, k1, k2 ≤ p − 1, we have

〈Ak〉p =
〈
Ak

〉
p

= 0, 〈Bk〉p =
〈
Bk

〉
p

= 0 and
〈
Ak1 Ak2

〉
p =

〈
Ak1 Ak2

〉
p

= 0. (4.15)

By (4.8) and (4.15), we have〈 p−1∏
k=0

∣∣∣∣ fv
′
(
ϕv

(
σdk))∣∣∣∣−D

〉
p

= d−nD

1 +
D2

4d4

∑
0≤k1,k2≤p−1

〈
Ak1 Ak2

〉
p

∣∣∣vn−1
∣∣∣2 + O

(
v3(n−1)

)
. (4.16)

By (4.6) and (4.7), we have〈
Ak1 Ak2

〉
p

= d4(d − 1)2
〈
u1

(
σdk1

)
u1

(
σdk2

)〉
p

+ d4(m − 1)2
〈
σ−n(dk1−dk2)〉

p

− d4 (d − 1) (m − 1)
〈
u1

(
σdk1

)
σndk2

+ u1

(
σdk2

)
σ−ndk1

〉
p
.

(4.17)

Since 0 ≤ k1, k2 ≤ p − 1, it follows that k1 − k2 = lp for l ∈ N if and only if k1 = k2. By (4.11), we
have 〈

σ−n(dk1−dk2)〉
p
=

{
1, if k1 = k2,

0, otherwise.
(4.18)

That means ∑
0≤k1,k2≤p−1

〈
σ−n(dk1−dk2)〉

p
= p. (4.19)

Similarly, by (4.11), we have

〈
u1

(
σdk1

)
σndk2

〉
p

= −
1
n

+∞∑
l=0

〈
σ−n(dk1+l−dk2)

〉
p

dl

=

 1
n

dk1−k2

dp−1 , if k1 ≥ k2,
1
n

dp−(k2−k1)
dp−1 , if k1 < k2.

(4.20)
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That means ∑
0≤k1,k2≤p−1

〈
u1

(
σdk1

)
σndk2

〉
p

= −
1
n

∑
0≤k2≤k1≤p−1

dk1−k2

dp − 1
−

1
n

∑
0≤k1<k2≤p−1

dp−(k2−k1)

dp − 1

= −
1
n

p
dp − 1

(d + · · · + dp)

= −
pm

d − 1
.

(4.21)

Moreover, by (4.11), we have

〈
u1

(
σdk1

)
u1

(
σndk2

)〉
p

=

+∞∑
l1=1

+∞∑
l2=1

〈
σ−n(dk1+l1−dk2+l2)

〉
p

dl1+l2
. (4.22)

Similar to the reduction process of (4.21), we have∑
0≤k1,k2≤p−1

〈
u1

(
σdk1

)
u1

(
σdk2

)〉
p

=
pm2

(d − 1)2 . (4.23)

By substituting (4.19), (4.21) and (4.23) into (4.17), we have∑
0≤k1,k2≤p−1

〈
Ak1 Ak2

〉
p

= pd4. (4.24)

For every D > 0 and sufficiently large p, the following holds〈 p−1∏
k=0

∣∣∣∣ fv
′
(
ϕv

(
σdk))∣∣∣∣−D

〉
p

= |d|−pD

1 +
D2 p

∣∣∣vn−1
∣∣∣2

4
+ O

(
v3(n−1)

) . (4.25)

That is (4.2) holds. The proof of Proposition 4.1 is complete. �
Note that Jv is a quasicircle and 0 and ∞ are two attracting fixed points of fv, and f p

v has dp + 1
fixed points in Ĉ, then we get f p

v has dp − 1 fixed points in Jv. Set Fix ( f ) be the collection of all the
repelling fixed points of fv with period p. We get the following proposition.

Proposition 4.2. Let Dv := dimH (Jv) be the Hausdorff dimension of Jv, we claim that Dv satisfies the
following equation ∑

z∈Fix( f p
v )

∣∣∣( f p
v
)′ (z)

∣∣∣−Dv
= O (1) . (4.26)

Proof. Since fv is hyperbolic and the Julia set Jv of fv is a quasicircle, there exist a pair of closed
annular neighborhoods W1, W2 of Jv and a quasiconformal mapping φ : W1 → Aε, ε > 0 is small
enough and Aε := {z : 1 − ε ≤ |z| ≤ 1 + ε}, such that φ conjugates fv : W1 → W2 to z 7→ zd or z 7→ z−d.
Without loss of generality, we only consider the first case.

The Julia set of a hyperbolic rational map can be seen as the limit of a sequence of IFS. These IFS are
defined in terms of the inverse branches of the iterations of the rational map. Since Jv separates 0 and
∞, we define a curve γ := φ−1

([
(1 − ε)d, (1 + ε)d

])
⊂ W2. In order to define IFS, we lift Jv and fv under
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the exponential map. Fix a component of exp−1 (W2\γ) and denote it by U. Then U is topologically a
strip and exp : U → W2\γ is conformal in the interior of U. For each p ≥ 1, the map f p

v : W1 → W2

has dp inverse branches, say T1, · · · ,Tdp , each maps W2\γ onto a half open quadrilateral such that their
images are arranged in anticlockwise order one by one. Define S i := log ◦Ti ◦ exp, 1 ≤ i ≤ dp, be the
map in U. Then each S i is conformal in the interior of U and can be conformally extended to an open
neighborhood of Ū. Since fv is strictly expanding on W1, {S 1, · · · , S dp} is an IFS defined on Ū.

The attractor Jv
′ of {S 1, · · · , S dp} is a closed set satisfying Jv = exp (Jv

′). Moreover, Jv\ {z1} is the
conformal image of Jv

′ with two ends removed, where z1 ∈ Jv ∩ γ is a fixed point of fv. This means
that the Hausdorff dimensions of Jv

′ and Jv satisfy dimH (Jv
′) = dimH (Jv). Let Fp |U := ∪dp

i=1S −1
i

∣∣∣S i(U)

be the lift of f p
v under exp. Then for 1 < i < dp each S i (U) contains only one fixed point ζi ∈ Jv

′ of
Fp in its interior and for i = 1 or i = dp the fixed point on its boundary. Since S i can be conformally
extended to an open neighborhood of Ū, by Koebes distortion theorem, there exist two constants C1,
C2 (0 < C1 ≤ 1 ≤ C2) both independent of p, such that

C1∣∣∣Fp
′ (ζi)

∣∣∣ ≤ |S i (x) − S i (y)|
|x − y|

≤
C2∣∣∣Fp
′ (ζi)

∣∣∣ , (4.27)

where 1 ≤ i ≤ dp, x, y ∈ Ū. By Theorem 2.3 we get s1 ≤ Dv ≤ s2, where
∑dp

i=0 C s j

j

∣∣∣Fp
′ (ζi)

∣∣∣−s j
= 1,

j = 1, 2. Then

1

CDv
2

≤
1

C s2
2
≤

∑dp

i=1

1∣∣∣Fp
′ (ζi)

∣∣∣s2
≤

∑dp

i=1

1∣∣∣Fp
′ (ζi)

∣∣∣Dv
≤

∑dp

i=1

1∣∣∣Fp
′ (ζi)

∣∣∣s1
≤

1
C s1

1
≤

1

CDv
1

. (4.28)

Since Fp is conformally conjugate to f p
v in the interior of each S i (U), we have Fn

′ (ζi) = ( f p)′
(
exp (ζi)

)
for 1 ≤ i ≤ dp. Therefore, by (4.28), we have∑

z∈Fix( f p
v )

1∣∣∣( f p
v
)′ (z)

∣∣∣Dv
=

∑dp

i=1

1∣∣∣( f p
v
)′ (exp (ζi)

)∣∣∣Dv
=

∑dp

i=1

1∣∣∣Fp
′ (ζi)

∣∣∣Dv
−

∣∣∣Fp
′ (ζdp)

∣∣∣−Dv
= O (1) . (4.29)

The proof of Proposition 4.2 is complete. �
The Proof of Theorem 1. By Proposition 4.1 and Proposition 4.2, we have

|dp − 1| |d|−pDv

1 +
D2 p

∣∣∣vn−1
∣∣∣2

4
+ O

(
v3(n−1)

) = O (1) . (4.30)

Fix some large p when v is small enough. Then (4.30) is equivalent to

exp
(
p
(
D2

v

∣∣∣vn−1
∣∣∣2 − (Dv − 1) log |d|

)
+ O

(
v3(n−1)

))
= O (1) . (4.31)

By Theorem 2.1 and Theorem 2.2, Dv depends real analytically on v in a small neighborhood of the
origin and D0 = 1. This means that in a small neighborhood of 0, Dv can be written as

Dv = 1 + a10vn−1 + a01vn−1 + a20v2(n−1) + a02v2(n−1) + a11

∣∣∣vn−1
∣∣∣2 + O

(
v3(n−1)

)
. (4.32)

Substituting (4.32) into (4.31) and comparing the corresponding coefficients, we have

a10 = a01 = a20 = a02 = 0 and a11 =
1

4 log |d|
. (4.33)
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That means

Dv = 1 +

∣∣∣vn−1
∣∣∣2

4 log |d|
+ O

(
v2n−1

)
. (4.34)

So the Hausdorff dimension Dλ of J (Umnλ) is

Dλ = 1 +
|λ|−

2(n−1)
mn−1

4 log mn
+ O

(
|λ|−

3(n−1)
mn−1

)
. (4.35)

This ends the proof of the case (II − 3) in Theorem 1.
Similarly, the other cases can be proved by the similar method as used in the case (II − 3). Hence

the Hausdorff dimension of dimH (Jmnλ) is given by the following asymptotic formula.
(I) If m < n

dimH (Jmnλ) =


1 + |λ|

−
2(m−1)
mn−1

4 log(mn) + O

(
|λ|−

3(m−1)
mn−1

)
, f or m − 1 < 1

3 (n − 1) or m − 1 = 1
2 (n − 1) ,

1 + |λ|
−

2(m−1)
mn−1

4 log(mn) + O
(
|λ|−

n−1
mn−1

)
, f or 1

3 (n − 1) < m − 1 < 1
2 (n − 1) ,

1 + |λ|
−

2(m−1)
mn−1

4 log(mn) + O
(
|λ|−

m+n−2
mn−1

)
, f or m − 1 > 1

2 (n − 1) .

(4.36)

(II) If m > n

dimH (Jmnλ) =


1 + |λ|

−
2(n−1)
mn−1

4 log(mn) + O

(
|λ|−

3(n−1)
mn−1

)
, f or m − 1 > 3 (n − 1) or m − 1 = 2 (n − 1) ,

1 + |λ|
−

2(n−1)
mn−1

4 log(mn) + O
(
|λ|−

m−1
mn−1

)
, f or 2 (n − 1) < m − 1 < 3 (n − 1) ,

1 + |λ|
−

2(n−1)
mn−1

4 log(mn) + O
(
|λ|−

m+n−2
mn−1

)
, f or m − 1 < 2 (n − 1) .

(4.37)

The proof of the Theorem 1 is complete. �
Proof of Corollary 1. If m = n, then d = n2, we can get

fv (z) = zd +
(
nzn(n−1)

− dzd+1
)

vn−1 +

(
d (d + 1)

2
zd+2

+nzn(n−1) + (1 − n)dzn2−n+1
)

v2(n−1) + O
(
v3(n−1)

)
.

(4.38)

Since every point on J0 moves holomorphically, we have

ϕv (z) = z
(
1 + u1 (z) vn−1 + u2 (z) v2(n−1) + O

(
v3(n−1)

))
. (4.39)

Substituting (4.38) and (4.39) into (3.3), we obtain the following equations

u1

(
zd

)
− du1 (z) = nz−n − dz, (4.40)

u2

(
zd

)
− du2 (z) =

d (d − 1)
2

u2
1 (z) +

(
d (n − 1) z−n − d (d + 1) z

)
u1 (z)

+
n (n − 1)

2
z−2n +

d (d + 1)
2

z2 + (1 − n)dz1−n.

(4.41)
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By (3.8) and (3.9), we get that the solutions of (4.40) is

u1 (z) =

+∞∑
k=0

zdk

dk −
z−ndk

ndk

. (4.42)

Therefore, Eq (4.41) can be reduced to

u2

(
zd

)
− du2 (z) =

d (d − 1)
2

 +∞∑
l=0

zdl

dl −
z−ndl

ndl

2

+ d (n − 1)
+∞∑
l=0

zdl−n

dl −
z−n(dl+1)

ndl


− d (d + 1)

+∞∑
l=0

zdl+1

dl −
z−ndl+1

ndl

 +
n (n − 1)

2
z−2n

+
d (d + 1)

2
z2 + (1 − n)dz1−n.

(4.43)

By (3.9) and (4.43), the solution of u2 (z) is

u2 (z) =

+∞∑
k=0

(d + 1)
+∞∑
l=0

zdl+k+dk

dl+k −
z−nzdl+k+dk

ndl+k

 − d − 1
2

 +∞∑
l=0

zdl+k

dl+k −
z−ndl+k

ndl+k

2

− (n − 1)
+∞∑
l=0

z(dl−n)dk

dl+k −
z−n(dl+1)dk

ndl+k

 − m − 1
2n

z−2ndk

dk

−
d + 1

2
z2dk

dk − (1 − n)
z(1−n)dk

dk

 .
(4.44)

It can be proofed by the method as Theorem 1 that if |λ| is sufficiently large, the Hausdorff dimension
Dλ of J (Umnλ) is

Dλ = 1 +
2|λ|−

2(n−1)
n2−1

4 log n2 + O

(
|λ|−

3(n−1)
n2−1

)
. (4.45)

i.e.

Dλ = 1 +
|λ|−

2
n+1

4 log n
+ O

(
|λ|−

3
n+1

)
. (4.46)
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