We calculate several identities involving some Gauss sums of the $ 2^k $-order character modulo an odd prime $ p $ by using the elementary and analytic methods, and finally give several exact and interesting formulae for them. The properties of the classical Gauss sums play an important role in the proof of this paper.
Citation: Xi Liu. Some identities involving Gauss sums[J]. AIMS Mathematics, 2022, 7(2): 3250-3257. doi: 10.3934/math.2022180
We calculate several identities involving some Gauss sums of the $ 2^k $-order character modulo an odd prime $ p $ by using the elementary and analytic methods, and finally give several exact and interesting formulae for them. The properties of the classical Gauss sums play an important role in the proof of this paper.
[1] | T. M. Apostol, Introduction to analytic number theory, New York: Springer-Verlag, 1976. |
[2] | D. A. Burgess, On Dirichlet characters of polynomials, Proc. London Math. Soc., 13 (1963), 537–548. doi: 10.1112/plms/s3-13.1.537. doi: 10.1112/plms/s3-13.1.537 |
[3] | B. C. Berndt, R. J. Evans, The determination of Gauss sums, Bull. Am. Math Soc., 5 (1981), 107–129. doi: 10.1090/S0273-0979-1981-14930-2. doi: 10.1090/S0273-0979-1981-14930-2 |
[4] | J. Bourgain, M. Z. Garaev, S. V. Konyagin, I. E. Shparlinski, On the hidden shifted power problem, SIAM J. Comput., 41 (2012), 1524–1557. doi: 10.1137/110850414. doi: 10.1137/110850414 |
[5] | L. Chen, On classical Gauss sums and some of their properties, Symmetry, 10 (2018), 625. doi: 10.3390/sym10110625. doi: 10.3390/sym10110625 |
[6] | S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. doi: 10.1016/0022-314X(77)90010-5. doi: 10.1016/0022-314X(77)90010-5 |
[7] | L. Chen, J. Y. Hu, A linear recurrence formula involving cubic Gauss sums and Kloosterman sums, Acta Math. Sin. (Chin. Ser.), 61 (2018), 67–72. |
[8] | Z. Y. Chen, W. P. Zhang, On the fourth-order linear recurrence formula related to classical Gauss sums, Open Math., 15 (2017), 1251–1255. doi: 10.1515/math-2017-0104. doi: 10.1515/math-2017-0104 |
[9] | A. Granville, K. Soundararajan, Large character sums: Pretentious characters and the Pólya-Vinogradov theorem, J. Amer. Math. Soc., 20 (2007), 357–384. doi: 10.1090/S0894-0347-06-00536-4. doi: 10.1090/S0894-0347-06-00536-4 |
[10] | D. Han, A Hybrid mean value involving two-term exponential sums and polynomial character sums, Czech. Math. J., 64 (2014), 53–62. doi: 10.1007/s10587-014-0082-0. doi: 10.1007/s10587-014-0082-0 |
[11] | K. Ireland, M. Rosen, A classical introduction to modern number theory, New York: Springer-Verlag, 1990. doi: 10.1007/978-1-4757-2103-4. |
[12] | X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907. doi: 10.3390/math7100907. doi: 10.3390/math7100907 |
[13] | C. D. Pan, C. B. Pan, Goldbach conjecture, Beijing: Science Press, 1992. |
[14] | A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. USA, 34 (1948), 204–207. doi: 10.1073/pnas.34.5.204. doi: 10.1073/pnas.34.5.204 |
[15] | W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation $\bmod p$, Math. Rep., 20 (2018), 73–80. |
[16] | W. P. Zhang, A. Samad, Z. Y. Chen, New identities dealing with Gauss sums, Symmetry, 12 (2020), 1416. doi: 10.3390/sym12091416. doi: 10.3390/sym12091416 |
[17] | W. P. Zhang, Y. Yi, On Dirichlet characters of polynomials, Bull. London Math. Soc., 34 (2002), 469–473. doi: 10.1112/S0024609302001030. doi: 10.1112/S0024609302001030 |
[18] | W. P. Zhang, W. L Yao, A note on the Dirichlet characters of polynomials, Acta Arith., 115 (2004), 225–229. doi: 10.4064/aa115-3-3. doi: 10.4064/aa115-3-3 |