Citation: Wenjia Guo, Yuankui Ma, Tianping Zhang. New identities involving Hardy sums $S_3(h, k)$ and general Kloosterman sums[J]. AIMS Mathematics, 2021, 6(2): 1596-1606. doi: 10.3934/math.2021095
[1] | T. M. Apostol, Modular function and Dirichlet series in number theory, New York: Springer-Verlag, 1976. |
[2] | L. Carlitz, The reciprocity theorem of Dedekind sums, Pacific J. Math., 3 (1953), 513-522. doi: 10.2140/pjm.1953.3.513 |
[3] | J. B. Conrey, E. Fransen, R. Klein, C. Scott, Mean values of Dedekind sums, J. Number Theory, 56 (1996), 214-226. doi: 10.1006/jnth.1996.0014 |
[4] | X. L. He, W. P. Zhang, On the mean value of the Dedekind sum with the weight of Hurwitz zeta-function, J. Math. Anal. Appl., 240 (1999), 505-517. doi: 10.1006/jmaa.1999.6607 |
[5] | B. C. Berndt, L. A. Goldberg, Analytic properties of arithmetic sums arising in the theory of the classical theta-function, SIAM J. Math. Anal., 15 (1984), 143-150. doi: 10.1137/0515011 |
[6] | H. Zhang, W. P. Zhang, On the identity involving certain Hardy sums and Kloosterman sums, Inequal. Appl., 52 (2014), 1-9. |
[7] | H. F. Zhang, T. P. Zhang, Some identities involving certain Hardy sums and general Kloosterman sums, Mathematics, 8 (2020), 95. doi: 10.3390/math8010095 |
[8] | B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, Reine Angew. Math., 303-304 (1978), 332-365. |
[9] | L. A. Goldberg, Transformations of theta-functions and analogues of Dedekind sums, Ph.D. thesis, University of Illinois, Urbana, 1981. |
[10] | R. Sitaramachandrarao, Dedekind and Hardy sums, Acta Arith., 48 (1978), 325-340. |
[11] | W. P. Zhang, On the mean values of Dedekind sums, J. Theor. Nombr. Bordx., 8 (1996), 429-442. doi: 10.5802/jtnb.179 |